Circhastic commited on
Commit
47fbf7b
1 Parent(s): e10970a

Quick fix app

Browse files
Files changed (2) hide show
  1. app.py +9 -38
  2. requirements.txt +1 -2
app.py CHANGED
@@ -1,10 +1,6 @@
1
  import streamlit as st
2
- from streamlit_lottie import st_lottie_spinner
3
- import json
4
- import time
5
- import requests
6
-
7
  import pandas as pd
 
8
  from datetime import datetime
9
 
10
  import numpy as np
@@ -23,16 +19,6 @@ st.set_page_config(
23
  initial_sidebar_state="expanded",
24
  )
25
 
26
- @st.cache_data
27
- def load_lottieurl(url: str):
28
- r = requests.get(url)
29
- if r.status_code != 200:
30
- return None
31
- return r.json()
32
-
33
- lottie_progress_url = "https://lottie.host/12c7a018-d6c9-4595-abab-2992e4117d95/TnBbTO5WR5.json"
34
- lottie_progress = load_lottieurl(lottie_progress_url)
35
-
36
  # Preprocessing
37
  @st.cache_data
38
  def merge(B, C, A):
@@ -148,20 +134,6 @@ def train_test(dataframe):
148
  future_X = dataframe.iloc[0:,1:]
149
  return (training_y, test_y, test_y_series, training_X, test_X, future_X)
150
 
151
- # @st.cache_data
152
- # def model_fitting(dataframe, Exo):
153
- # futureModel = pm.auto_arima(dataframe['Sales'], X=Exo, start_p=1, start_q=1,
154
- # test='adf',min_p=1,min_q=1,
155
- # max_p=3, max_q=3, m=12,
156
- # start_P=0, seasonal=True,
157
- # d=None, D=1, trace=True,
158
- # error_action='ignore',
159
- # suppress_warnings=True,
160
- # stepwise=True,
161
- # maxiter=5)
162
- # model = futureModel
163
- # return model
164
-
165
  @st.cache_data
166
  def test_fitting(dataframe, Exo, trainY):
167
  trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
@@ -171,8 +143,7 @@ def test_fitting(dataframe, Exo, trainY):
171
  d=None, D=1, trace=True,
172
  error_action='ignore',
173
  suppress_warnings=True,
174
- stepwise=True,
175
- maxiter=5)
176
  model = trainTestModel
177
  return model
178
 
@@ -276,12 +247,10 @@ with st.sidebar:
276
  st.write("Your uploaded data:")
277
  st.write(df)
278
 
279
- with st_lottie_spinner(lottie_progress, loop=True, key="progress"):
280
- time.sleep(5)
281
- df = drop(df)
282
- df = date_format(df)
283
- merge_sort(df)
284
- series = group_to_three(df)
285
 
286
  st.session_state.uploaded = True
287
 
@@ -323,7 +292,9 @@ if (st.session_state.uploaded):
323
  col1, col2 = st.columns(2)
324
  with col1:
325
  col1.header("Sales Forecast")
326
- col1.line_chart(df['Sales'], x="Date", y="Actual Sales", color="#0000EE")
 
 
327
  # plt.figure(figsize=(18,10))
328
  # plt.plot(df['Sales'], color='b', label = 'Actual Sales')
329
  # plt.plot(test_y, color='b')
 
1
  import streamlit as st
 
 
 
 
 
2
  import pandas as pd
3
+ import time
4
  from datetime import datetime
5
 
6
  import numpy as np
 
19
  initial_sidebar_state="expanded",
20
  )
21
 
 
 
 
 
 
 
 
 
 
 
22
  # Preprocessing
23
  @st.cache_data
24
  def merge(B, C, A):
 
134
  future_X = dataframe.iloc[0:,1:]
135
  return (training_y, test_y, test_y_series, training_X, test_X, future_X)
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  @st.cache_data
138
  def test_fitting(dataframe, Exo, trainY):
139
  trainTestModel = auto_arima(X = Exo, y = trainY, start_p=1, start_q=1,
 
143
  d=None, D=1, trace=True,
144
  error_action='ignore',
145
  suppress_warnings=True,
146
+ stepwise=True)
 
147
  model = trainTestModel
148
  return model
149
 
 
247
  st.write("Your uploaded data:")
248
  st.write(df)
249
 
250
+ df = drop(df)
251
+ df = date_format(df)
252
+ merge_sort(df)
253
+ series = group_to_three(df)
 
 
254
 
255
  st.session_state.uploaded = True
256
 
 
292
  col1, col2 = st.columns(2)
293
  with col1:
294
  col1.header("Sales Forecast")
295
+ chart_data = pd.DataFrame(np.random.randn(20, 3), columns=["Forecasted", "Predicted", "Actual Sale"])
296
+ col1.line_chart(chart_data)
297
+ # col1.line_chart(df['Sales'], x="Date", y="Actual Sales", color="#0000EE")
298
  # plt.figure(figsize=(18,10))
299
  # plt.plot(df['Sales'], color='b', label = 'Actual Sales')
300
  # plt.plot(test_y, color='b')
requirements.txt CHANGED
@@ -2,5 +2,4 @@ pmdarima
2
  statsmodels
3
  transformers
4
  torch
5
- streamlit
6
- streamlit-lottie
 
2
  statsmodels
3
  transformers
4
  torch
5
+ streamlit