Spaces:
Running
Running
Circhastic
commited on
Commit
•
51520f0
1
Parent(s):
8b45a7a
Update app
Browse files
app.py
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
from datetime import datetime
|
4 |
|
@@ -18,6 +22,16 @@ st.set_page_config(
|
|
18 |
initial_sidebar_state="expanded",
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
# Preprocessing
|
22 |
@st.cache_data
|
23 |
def merge(B, C, A):
|
@@ -261,10 +275,13 @@ with st.sidebar:
|
|
261 |
st.write("Your uploaded data:")
|
262 |
st.write(df)
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
|
|
268 |
st.session_state.uploaded = True
|
269 |
|
270 |
with open('sample.csv', 'rb') as f:
|
@@ -290,13 +307,9 @@ if (st.session_state.uploaded):
|
|
290 |
train = train_test(df)
|
291 |
training_y, test_y, test_y_series, training_X, test_X, future_X = train
|
292 |
train_test_model = test_fitting(df, training_X, training_y)
|
293 |
-
|
294 |
n_periods = round(len(df) * 0.2)
|
295 |
-
|
296 |
future_n_periods = forecast_period + n_periods
|
297 |
-
|
298 |
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
|
299 |
-
|
300 |
index_of_fc = test_y_series.index
|
301 |
|
302 |
# make series for plotting purpose
|
@@ -305,6 +318,20 @@ if (st.session_state.uploaded):
|
|
305 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
306 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
#Future predictions
|
309 |
frequency = '3D'
|
310 |
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
|
@@ -316,11 +343,23 @@ if (st.session_state.uploaded):
|
|
316 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
317 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
future_sales_growth = sales_growth(df, future_fitted_series)
|
320 |
future_sales_growth = future_sales_growth.iloc[n_periods:]
|
321 |
df = dates_df(future_sales_growth)
|
322 |
-
|
323 |
-
|
|
|
324 |
st.session_state.forecasted = True
|
325 |
|
326 |
with st.form("question_form"):
|
@@ -329,4 +368,12 @@ if (st.session_state.uploaded):
|
|
329 |
|
330 |
if query_button or question:
|
331 |
answer = get_converted_answer(df, question)
|
332 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from streamlit_lottie import st_lottie_spinner
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
|
6 |
import pandas as pd
|
7 |
from datetime import datetime
|
8 |
|
|
|
22 |
initial_sidebar_state="expanded",
|
23 |
)
|
24 |
|
25 |
+
@st.cache_data
|
26 |
+
def load_lottieurl(url: str):
|
27 |
+
r = requests.get(url)
|
28 |
+
if r.status_code != 200:
|
29 |
+
return None
|
30 |
+
return r.json()
|
31 |
+
|
32 |
+
lottie_progress_url = "https://lottie.host/12c7a018-d6c9-4595-abab-2992e4117d95/TnBbTO5WR5.json"
|
33 |
+
lottie_progress = load_lottieurl(lottie_progress_url)
|
34 |
+
|
35 |
# Preprocessing
|
36 |
@st.cache_data
|
37 |
def merge(B, C, A):
|
|
|
275 |
st.write("Your uploaded data:")
|
276 |
st.write(df)
|
277 |
|
278 |
+
with st_lottie_spinner(lottie_progress, loop=True, key="progress"):
|
279 |
+
time.sleep(5)
|
280 |
+
df = drop(df)
|
281 |
+
df = date_format(df)
|
282 |
+
merge_sort(df)
|
283 |
+
series = group_to_three(df)
|
284 |
+
|
285 |
st.session_state.uploaded = True
|
286 |
|
287 |
with open('sample.csv', 'rb') as f:
|
|
|
307 |
train = train_test(df)
|
308 |
training_y, test_y, test_y_series, training_X, test_X, future_X = train
|
309 |
train_test_model = test_fitting(df, training_X, training_y)
|
|
|
310 |
n_periods = round(len(df) * 0.2)
|
|
|
311 |
future_n_periods = forecast_period + n_periods
|
|
|
312 |
fitted, confint = train_test_model.predict(X=test_X, n_periods=n_periods, return_conf_int=True)
|
|
|
313 |
index_of_fc = test_y_series.index
|
314 |
|
315 |
# make series for plotting purpose
|
|
|
318 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
319 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
320 |
|
321 |
+
#TODO Plot Test and Training
|
322 |
+
col1, col2 = st.columns(2)
|
323 |
+
with col1:
|
324 |
+
col1.header("Sales Forecast")
|
325 |
+
col1.line_chart(df['Sales'], x="Date", y="Actual Sales" color="#0000EE")
|
326 |
+
# plt.figure(figsize=(18,10))
|
327 |
+
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
|
328 |
+
# plt.plot(test_y, color='b')
|
329 |
+
# plt.plot(fitted_series, color='r', label = 'Predicted Sales')
|
330 |
+
# plt.title("SARIMAX - Forecast of Auto Business Retail Sales VS Actual Sales")
|
331 |
+
# plt.legend(loc='upper left', fontsize=8)
|
332 |
+
# plt.show()
|
333 |
+
# plt.savefig('Auto Retail Future Sales Forecast 80-20.png')
|
334 |
+
|
335 |
#Future predictions
|
336 |
frequency = '3D'
|
337 |
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
|
|
|
343 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
344 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
345 |
|
346 |
+
# TODO Plot Future
|
347 |
+
# plt.plot(future_fitted_series, color='darkgreen', label ='Future Forecasted Sales')
|
348 |
+
# plt.fill_between(future_lower_series.index,
|
349 |
+
# future_lower_series,
|
350 |
+
# future_upper_series,
|
351 |
+
# color='k', alpha=.15)
|
352 |
+
# plt.fill_between(lower_series.index,
|
353 |
+
# lower_series,
|
354 |
+
# upper_series,
|
355 |
+
# color='k', alpha=.15)
|
356 |
+
|
357 |
future_sales_growth = sales_growth(df, future_fitted_series)
|
358 |
future_sales_growth = future_sales_growth.iloc[n_periods:]
|
359 |
df = dates_df(future_sales_growth)
|
360 |
+
with col2:
|
361 |
+
col2.subheader("Forecasted sales in x days")
|
362 |
+
col2.write(df)
|
363 |
st.session_state.forecasted = True
|
364 |
|
365 |
with st.form("question_form"):
|
|
|
368 |
|
369 |
if query_button or question:
|
370 |
answer = get_converted_answer(df, question)
|
371 |
+
st.subheader("The answer is:", answer)
|
372 |
+
|
373 |
+
# Hide Streamlit default style
|
374 |
+
hide_st_style = """
|
375 |
+
<style>
|
376 |
+
footer {visibility: hidden;}
|
377 |
+
</style>
|
378 |
+
"""
|
379 |
+
st.markdown(hide_st_style, unsafe_allow_html=True)
|