Circhastic commited on
Commit
6607488
1 Parent(s): 128493f

Version 1 hotfix #27 for merge

Browse files
Files changed (1) hide show
  1. app.py +13 -12
app.py CHANGED
@@ -195,16 +195,17 @@ def merge_forecast_data(actual, predicted, future):
195
  return merged_dataframe
196
 
197
  @st.cache_data
198
- def interpret_mape(acc):
199
- acc = acc * 100
200
- if acc['mape'] < 10:
201
- return "Great"
202
- elif acc['mape'] < 20:
203
- return "Good"
204
- elif acc['mape'] < 50:
205
- return "Relatively Good"
206
  else:
207
- return "Poor"
 
208
 
209
  # TAPAS Model
210
 
@@ -356,8 +357,8 @@ if (st.session_state.uploaded):
356
  df = dates_df(future_sales_growth)
357
 
358
  test_y, predictions = np.array(test_y), np.array(fitted)
359
- acc = forecast_accuracy(predictions, test_y)
360
- interpretation = interpret_mape(acc)
361
 
362
  col = st.columns(2)
363
  with col[0]:
@@ -370,7 +371,7 @@ if (st.session_state.uploaded):
370
  fig.update_layout(title='Forecasted Sales Data', xaxis_title='Date', yaxis_title='Sales')
371
  fig.update_xaxes(range=['2018-01-01', '2026-01-01'])
372
  col[0].plotly_chart(fig)
373
- col[0].write(f"MAPE score: {acc['mape'] * 100}% - {interpretation}")
374
  with col[1]:
375
  col[1].subheader(f"Forecasted sales in the next {period} days")
376
  col[1].write(df)
 
195
  return merged_dataframe
196
 
197
  @st.cache_data
198
+ def interpret_mape(mape):
199
+ mape = mape * 100
200
+ if mape < 10:
201
+ interpretation = "Highly Accurate"
202
+ elif mape < 20:
203
+ interpretation = "Good Accuracy"
204
+ elif mape < 50:
205
+ interpretation = "Reasonable Accuracy"
206
  else:
207
+ interpretation = "Inaccurate"
208
+ return mape, interpretation
209
 
210
  # TAPAS Model
211
 
 
357
  df = dates_df(future_sales_growth)
358
 
359
  test_y, predictions = np.array(test_y), np.array(fitted)
360
+ score = forecast_accuracy(predictions, test_y)
361
+ mape, interpretation = interpret_mape(score)
362
 
363
  col = st.columns(2)
364
  with col[0]:
 
371
  fig.update_layout(title='Forecasted Sales Data', xaxis_title='Date', yaxis_title='Sales')
372
  fig.update_xaxes(range=['2018-01-01', '2026-01-01'])
373
  col[0].plotly_chart(fig)
374
+ col[0].write(f"MAPE score: {mape}% - {interpretation}")
375
  with col[1]:
376
  col[1].subheader(f"Forecasted sales in the next {period} days")
377
  col[1].write(df)