Spaces:
Running
Running
Commit
Β·
804d8f9
1
Parent(s):
9d2e2d0
Fix app
Browse files- app.py +43 -86
- requirements.txt +1 -2
app.py
CHANGED
@@ -6,7 +6,7 @@ import numpy as np
|
|
6 |
import pmdarima as pm
|
7 |
import matplotlib.pyplot as plt
|
8 |
from pmdarima import auto_arima
|
9 |
-
import plotly.graph_objects as go
|
10 |
|
11 |
import torch
|
12 |
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
|
@@ -98,6 +98,31 @@ def group_to_three(dataframe):
|
|
98 |
|
99 |
return dataframe
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# SARIMAX Model
|
102 |
@st.cache_data
|
103 |
def train_test(dataframe):
|
@@ -120,7 +145,7 @@ def model_fitting(dataframe, Exo):
|
|
120 |
error_action='ignore',
|
121 |
suppress_warnings=True,
|
122 |
stepwise=True,
|
123 |
-
maxiter=
|
124 |
model = futureModel
|
125 |
return model
|
126 |
|
@@ -134,7 +159,7 @@ def test_fitting(dataframe, Exo, trainY):
|
|
134 |
error_action='ignore',
|
135 |
suppress_warnings=True,
|
136 |
stepwise=True,
|
137 |
-
maxiter=
|
138 |
model = trainTestModel
|
139 |
return model
|
140 |
|
@@ -212,18 +237,20 @@ def get_converted_answer(table, query):
|
|
212 |
|
213 |
|
214 |
# Web Application
|
215 |
-
st.title("
|
216 |
st.subheader("Welcome User, start using the application by uploading your file in the sidebar!")
|
217 |
|
218 |
# Session States
|
219 |
if 'uploaded' not in st.session_state:
|
220 |
st.session_state.uploaded = False
|
221 |
|
222 |
-
if 'preprocessed_data' not in st.session_state:
|
223 |
-
|
224 |
|
225 |
# Sidebar Menu
|
226 |
with st.sidebar:
|
|
|
|
|
227 |
uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
|
228 |
err = 0
|
229 |
if uploaded_file is not None:
|
@@ -240,35 +267,27 @@ with st.sidebar:
|
|
240 |
df = drop(df)
|
241 |
df = date_format(df)
|
242 |
merge_sort(df)
|
243 |
-
|
244 |
st.session_state.uploaded = True
|
245 |
|
246 |
with open('sample.csv', 'rb') as f:
|
247 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
248 |
|
249 |
if (st.session_state.uploaded):
|
250 |
-
st.line_chart(
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
|
|
255 |
|
256 |
forecast_button = st.button(
|
257 |
'Start Forecasting',
|
258 |
key='forecast_button',
|
259 |
type="primary",
|
260 |
)
|
261 |
-
|
262 |
if (forecast_button):
|
263 |
-
df =
|
264 |
-
df = df.reset_index()
|
265 |
-
df = df.set_index('Date')
|
266 |
-
df = df.dropna()
|
267 |
-
|
268 |
-
# Create the eXogenous values
|
269 |
-
df['Sales First Difference'] = df['Sales'] - df['Sales'].shift(1)
|
270 |
-
df['Seasonal First Difference'] = df['Sales'] - df['Sales'].shift(12)
|
271 |
-
df = df.dropna()
|
272 |
|
273 |
auto_train_test = train_test(df)
|
274 |
training_y, test_y, test_y_series, training_X, test_X, future_X = auto_train_test
|
@@ -285,7 +304,7 @@ if (st.session_state.uploaded):
|
|
285 |
|
286 |
# make series for plotting purpose
|
287 |
fitted_series = pd.Series(fitted)
|
288 |
-
fitted_series.index=index_of_fc
|
289 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
290 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
291 |
|
@@ -308,39 +327,7 @@ if (st.session_state.uploaded):
|
|
308 |
# plt.legend(loc='upper left', fontsize=8)
|
309 |
# plt.show()
|
310 |
|
311 |
-
trace_actual = go.Scatter(x=range(len(training_y) - 80, len(training_y)),
|
312 |
-
y=training_y[-80:],
|
313 |
-
mode='lines',
|
314 |
-
name='Training Data')
|
315 |
-
|
316 |
-
trace_actual_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(test_y)),
|
317 |
-
y=test_y,
|
318 |
-
mode='lines',
|
319 |
-
name='Actual Sales',
|
320 |
-
line=dict(color='red'))
|
321 |
-
|
322 |
-
trace_predicted_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(fitted_series)),
|
323 |
-
y=fitted_series,
|
324 |
-
mode='lines',
|
325 |
-
name='Predicted Sales',
|
326 |
-
line=dict(color='darkgreen'))
|
327 |
-
|
328 |
-
trace_fill_between = go.Scatter(x=list(range(len(training_y), len(training_y) + len(lower_series))) +
|
329 |
-
list(range(len(training_y) + len(lower_series), len(training_y) + len(upper_series))),
|
330 |
-
y=list(lower_series) + list(upper_series)[::-1],
|
331 |
-
fill='toself',
|
332 |
-
fillcolor='rgba(0,100,80,0.2)',
|
333 |
-
line=dict(color='rgba(255,255,255,0)'),
|
334 |
-
name='Prediction Interval')
|
335 |
-
|
336 |
# Combine traces and create layout
|
337 |
-
data = [trace_actual, trace_actual_sales, trace_predicted_sales, trace_fill_between]
|
338 |
-
layout = go.Layout(title="SARIMAX - Forecast of Retail Sales VS Actual Sales",
|
339 |
-
legend=dict(x=0, y=1.0),
|
340 |
-
xaxis=dict(title='X-axis Label'),
|
341 |
-
yaxis=dict(title='Y-axis Label'))
|
342 |
-
fig_test = go.Figure(data=data, layout=layout)
|
343 |
-
st.plotly_chart(fig_test)
|
344 |
|
345 |
# Forecast (actual)
|
346 |
n_periods = forecast_period
|
@@ -367,40 +354,10 @@ if (st.session_state.uploaded):
|
|
367 |
# plt.show()
|
368 |
|
369 |
# Create traces for each line and fill_between
|
370 |
-
trace_sales = go.Scatter(x=df.index[-50:],
|
371 |
-
y=df['Sales'][-50:],
|
372 |
-
mode='lines',
|
373 |
-
name='Sales')
|
374 |
-
|
375 |
-
trace_predicted_sales = go.Scatter(x=df.index[-50:] + future_fitted_series.index,
|
376 |
-
y=future_fitted_series,
|
377 |
-
mode='lines',
|
378 |
-
name='Predicted Sales',
|
379 |
-
line=dict(color='darkgreen'))
|
380 |
-
|
381 |
-
trace_fill_between = go.Scatter(x=list(df.index[-50:] + future_lower_series.index) +
|
382 |
-
list(df.index[-50:] + future_upper_series.index[::-1]),
|
383 |
-
y=list(future_lower_series) + list(future_upper_series)[::-1],
|
384 |
-
fill='toself',
|
385 |
-
fillcolor='rgba(0,100,80,0.2)',
|
386 |
-
line=dict(color='rgba(255,255,255,0)'),
|
387 |
-
name='Prediction Interval')
|
388 |
-
|
389 |
-
# Combine traces and create layout
|
390 |
-
data = [trace_sales, trace_predicted_sales, trace_fill_between]
|
391 |
-
layout = go.Layout(title="SARIMA - Final Forecast of Retail Sales",
|
392 |
-
legend=dict(x=0, y=1.0),
|
393 |
-
xaxis=dict(title='X-axis Label'),
|
394 |
-
yaxis=dict(title='Y-axis Label'))
|
395 |
-
fig_final = go.Figure(data=data, layout=layout)
|
396 |
-
st.plotly_chart(fig_final)
|
397 |
|
398 |
auto_sales_growth = sales_growth(df, future_fitted_series)
|
399 |
-
df = auto_sales_growth
|
400 |
-
df = df.reset_index()
|
401 |
-
df['Date'] = df['Date'].dt.strftime('%B %d, %Y')
|
402 |
-
df[df.columns] = df[df.columns].astype(str)
|
403 |
|
|
|
404 |
st.write("Forecasted sales in the next 3 months")
|
405 |
st.write(df)
|
406 |
|
|
|
6 |
import pmdarima as pm
|
7 |
import matplotlib.pyplot as plt
|
8 |
from pmdarima import auto_arima
|
9 |
+
# import plotly.graph_objects as go
|
10 |
|
11 |
import torch
|
12 |
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
|
|
|
98 |
|
99 |
return dataframe
|
100 |
|
101 |
+
@st.cache_data
|
102 |
+
def series_to_df_exogenous(series):
|
103 |
+
dataframe = series.to_frame()
|
104 |
+
dataframe = dataframe.reset_index()
|
105 |
+
dataframe = dataframe.set_index('Date')
|
106 |
+
dataframe = dataframe.dropna()
|
107 |
+
|
108 |
+
# Create the eXogenous values
|
109 |
+
dataframe['Sales First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(1)
|
110 |
+
dataframe['Seasonal First Difference'] = dataframe['Sales'] - dataframe['Sales'].shift(12)
|
111 |
+
dataframe = dataframe.dropna()
|
112 |
+
return dataframe
|
113 |
+
|
114 |
+
|
115 |
+
@st.cache_data
|
116 |
+
def series_to_df_dates(series):
|
117 |
+
dataframe = series.reset_index()
|
118 |
+
dataframe['Date'] = dataframe['Date'].dt.strftime('%B %d, %Y')
|
119 |
+
dataframe[df.columns] = dataframe[df.columns].astype(str)
|
120 |
+
return dataframe
|
121 |
+
|
122 |
+
@st.cache_data
|
123 |
+
def get_forecast_period(period):
|
124 |
+
return round(period / 3)
|
125 |
+
|
126 |
# SARIMAX Model
|
127 |
@st.cache_data
|
128 |
def train_test(dataframe):
|
|
|
145 |
error_action='ignore',
|
146 |
suppress_warnings=True,
|
147 |
stepwise=True,
|
148 |
+
maxiter=5)
|
149 |
model = futureModel
|
150 |
return model
|
151 |
|
|
|
159 |
error_action='ignore',
|
160 |
suppress_warnings=True,
|
161 |
stepwise=True,
|
162 |
+
maxiter=5)
|
163 |
model = trainTestModel
|
164 |
return model
|
165 |
|
|
|
237 |
|
238 |
|
239 |
# Web Application
|
240 |
+
st.title("Forecasting Dashboard π")
|
241 |
st.subheader("Welcome User, start using the application by uploading your file in the sidebar!")
|
242 |
|
243 |
# Session States
|
244 |
if 'uploaded' not in st.session_state:
|
245 |
st.session_state.uploaded = False
|
246 |
|
247 |
+
# if 'preprocessed_data' not in st.session_state:
|
248 |
+
# st.session_state.preprocessed_data = None
|
249 |
|
250 |
# Sidebar Menu
|
251 |
with st.sidebar:
|
252 |
+
st.title("SalesCast")
|
253 |
+
st.subheader("version 0.1")
|
254 |
uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
|
255 |
err = 0
|
256 |
if uploaded_file is not None:
|
|
|
267 |
df = drop(df)
|
268 |
df = date_format(df)
|
269 |
merge_sort(df)
|
270 |
+
series = group_to_three(df)
|
271 |
st.session_state.uploaded = True
|
272 |
|
273 |
with open('sample.csv', 'rb') as f:
|
274 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
275 |
|
276 |
if (st.session_state.uploaded):
|
277 |
+
st.line_chart(series)
|
278 |
+
|
279 |
+
MIN_DAYS = 30
|
280 |
+
MAX_DAYS = 90
|
281 |
+
period = st.slider('How many days would you like to forecast?', min_value=MIN_DAYS, max_value=MAX_DAYS)
|
282 |
+
forecast_period = get_forecast_period(period)
|
283 |
|
284 |
forecast_button = st.button(
|
285 |
'Start Forecasting',
|
286 |
key='forecast_button',
|
287 |
type="primary",
|
288 |
)
|
|
|
289 |
if (forecast_button):
|
290 |
+
df = series_to_df_exogenous(series)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
auto_train_test = train_test(df)
|
293 |
training_y, test_y, test_y_series, training_X, test_X, future_X = auto_train_test
|
|
|
304 |
|
305 |
# make series for plotting purpose
|
306 |
fitted_series = pd.Series(fitted)
|
307 |
+
fitted_series.index = index_of_fc
|
308 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
309 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
310 |
|
|
|
327 |
# plt.legend(loc='upper left', fontsize=8)
|
328 |
# plt.show()
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
# Combine traces and create layout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
# Forecast (actual)
|
333 |
n_periods = forecast_period
|
|
|
354 |
# plt.show()
|
355 |
|
356 |
# Create traces for each line and fill_between
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
|
358 |
auto_sales_growth = sales_growth(df, future_fitted_series)
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
df = series_to_df_dates(auto_sales_growth)
|
361 |
st.write("Forecasted sales in the next 3 months")
|
362 |
st.write(df)
|
363 |
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
pmdarima
|
2 |
statsmodels
|
3 |
transformers
|
4 |
-
torch
|
5 |
-
plotly==5.18.0
|
|
|
1 |
pmdarima
|
2 |
statsmodels
|
3 |
transformers
|
4 |
+
torch
|
|