Spaces:
Running
Running
Circhastic
commited on
Commit
•
cc724c9
1
Parent(s):
60d1a78
Version 1 fix
Browse files
app.py
CHANGED
@@ -181,6 +181,7 @@ def sales_growth(dataframe, fittedValues):
|
|
181 |
|
182 |
@st.cache_data
|
183 |
def merge_forecast_data(historical, test, future):
|
|
|
184 |
historical.rename(columns={historical.columns[0]: "Actual Sales"}, inplace=True)
|
185 |
test = test.to_frame()
|
186 |
test.rename(columns={test.columns[0]: "Predicted Sales"}, inplace=True)
|
@@ -275,6 +276,7 @@ with st.sidebar:
|
|
275 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
276 |
|
277 |
if (st.session_state.uploaded):
|
|
|
278 |
st.line_chart(series)
|
279 |
|
280 |
MIN_DAYS = 30
|
@@ -305,12 +307,6 @@ if (st.session_state.uploaded):
|
|
305 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
306 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
307 |
|
308 |
-
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
|
309 |
-
# plt.plot(test_y, color='b')
|
310 |
-
# plt.plot(fitted_series, color='r', label = 'Predicted Sales')
|
311 |
-
# plt.title("SARIMAX - Forecast of Auto Business Retail Sales VS Actual Sales")
|
312 |
-
# plt.legend(loc='upper left', fontsize=8)
|
313 |
-
|
314 |
#Future predictions
|
315 |
frequency = '3D'
|
316 |
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
|
@@ -322,7 +318,12 @@ if (st.session_state.uploaded):
|
|
322 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
323 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
324 |
|
325 |
-
#
|
|
|
|
|
|
|
|
|
|
|
326 |
# plt.plot(future_fitted_series, color='darkgreen', label ='Future Forecasted Sales')
|
327 |
# plt.fill_between(future_lower_series.index,
|
328 |
# future_lower_series,
|
@@ -343,7 +344,7 @@ if (st.session_state.uploaded):
|
|
343 |
merged_data = merge_forecast_data(df['Sales'], fitted_series, future_fitted_series)
|
344 |
col[0].line_chart(merged_data)
|
345 |
with col[1]:
|
346 |
-
col[1].subheader("Forecasted sales in
|
347 |
col[1].write(df)
|
348 |
st.session_state.forecasted = True
|
349 |
|
|
|
181 |
|
182 |
@st.cache_data
|
183 |
def merge_forecast_data(historical, test, future):
|
184 |
+
historical = historical.to_frame()
|
185 |
historical.rename(columns={historical.columns[0]: "Actual Sales"}, inplace=True)
|
186 |
test = test.to_frame()
|
187 |
test.rename(columns={test.columns[0]: "Predicted Sales"}, inplace=True)
|
|
|
276 |
st.download_button("Download our sample CSV", f, file_name='sample.csv')
|
277 |
|
278 |
if (st.session_state.uploaded):
|
279 |
+
st.subheader("Sales History")
|
280 |
st.line_chart(series)
|
281 |
|
282 |
MIN_DAYS = 30
|
|
|
307 |
lower_series = pd.Series(confint[:, 0], index=index_of_fc)
|
308 |
upper_series = pd.Series(confint[:, 1], index=index_of_fc)
|
309 |
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
#Future predictions
|
311 |
frequency = '3D'
|
312 |
future_fitted, confint = train_test_model.predict(X=df.iloc[-future_n_periods:,1:], n_periods=future_n_periods, return_conf_int=True, freq=frequency)
|
|
|
318 |
future_lower_series = pd.Series(confint[:, 0], index=future_index_of_fc)
|
319 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
320 |
|
321 |
+
# Plot
|
322 |
+
# plt.plot(df['Sales'], color='b', label = 'Actual Sales')
|
323 |
+
# plt.plot(test_y, color='b')
|
324 |
+
# plt.plot(fitted_series, color='r', label = 'Predicted Sales')
|
325 |
+
# plt.title("SARIMAX - Forecast of Auto Business Retail Sales VS Actual Sales")
|
326 |
+
# plt.legend(loc='upper left', fontsize=8)
|
327 |
# plt.plot(future_fitted_series, color='darkgreen', label ='Future Forecasted Sales')
|
328 |
# plt.fill_between(future_lower_series.index,
|
329 |
# future_lower_series,
|
|
|
344 |
merged_data = merge_forecast_data(df['Sales'], fitted_series, future_fitted_series)
|
345 |
col[0].line_chart(merged_data)
|
346 |
with col[1]:
|
347 |
+
col[1].subheader(f"Forecasted sales in the next {period} days")
|
348 |
col[1].write(df)
|
349 |
st.session_state.forecasted = True
|
350 |
|