Spaces:
Running
Running
Circhastic
commited on
Commit
β’
e40f126
1
Parent(s):
4bcb041
Fix app
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import numpy as np
|
|
6 |
import pmdarima as pm
|
7 |
import matplotlib.pyplot as plt
|
8 |
from pmdarima import auto_arima
|
|
|
9 |
|
10 |
import torch
|
11 |
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
|
@@ -211,8 +212,7 @@ def get_converted_answer(table, query):
|
|
211 |
|
212 |
|
213 |
# Web Application
|
214 |
-
|
215 |
-
st.title("Sales Forecasting Dashboard π")
|
216 |
st.subheader("Welcome User, start using the application by uploading your file in the sidebar!")
|
217 |
|
218 |
# Session States
|
@@ -222,9 +222,6 @@ if 'uploaded' not in st.session_state:
|
|
222 |
if 'preprocessed_data' not in st.session_state:
|
223 |
st.session_state.preprocessed_data = None
|
224 |
|
225 |
-
if 'fitted_models' not in st.session_state:
|
226 |
-
st.session_state.fitted_models = {}
|
227 |
-
|
228 |
# Sidebar Menu
|
229 |
with st.sidebar:
|
230 |
uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
|
@@ -297,18 +294,53 @@ if (st.session_state.uploaded):
|
|
297 |
|
298 |
st.title("Forecasted Sales")
|
299 |
|
300 |
-
|
301 |
-
plt.
|
302 |
-
plt.plot(
|
303 |
-
plt.plot(
|
304 |
-
plt.
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
plt.
|
311 |
-
plt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
# Forecast (actual)
|
314 |
n_periods = forecast_period
|
@@ -323,16 +355,45 @@ if (st.session_state.uploaded):
|
|
323 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
324 |
|
325 |
# Plot
|
326 |
-
plt.figure(figsize=(12,8))
|
327 |
-
plt.plot(df['Sales'][-50:])
|
328 |
-
plt.plot(future_fitted_series, color='darkgreen')
|
329 |
-
plt.fill_between(future_lower_series.index,
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
plt.title("SARIMA - Final Forecast of Retail Sales")
|
335 |
-
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
auto_sales_growth = sales_growth(df, future_fitted_series)
|
338 |
df = auto_sales_growth
|
@@ -343,7 +404,10 @@ if (st.session_state.uploaded):
|
|
343 |
st.write("Forecasted sales in the next 3 months")
|
344 |
st.write(df)
|
345 |
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
348 |
answer = get_converted_answer(df, question)
|
349 |
st.write("The answer is:", answer)
|
|
|
6 |
import pmdarima as pm
|
7 |
import matplotlib.pyplot as plt
|
8 |
from pmdarima import auto_arima
|
9 |
+
import plotly.graph_objects as go
|
10 |
|
11 |
import torch
|
12 |
from transformers import pipeline, TapasTokenizer, TapasForQuestionAnswering
|
|
|
212 |
|
213 |
|
214 |
# Web Application
|
215 |
+
st.title("π SalesCast Forecasting Dashboard")
|
|
|
216 |
st.subheader("Welcome User, start using the application by uploading your file in the sidebar!")
|
217 |
|
218 |
# Session States
|
|
|
222 |
if 'preprocessed_data' not in st.session_state:
|
223 |
st.session_state.preprocessed_data = None
|
224 |
|
|
|
|
|
|
|
225 |
# Sidebar Menu
|
226 |
with st.sidebar:
|
227 |
uploaded_file = st.file_uploader("Upload your Store Data here (must atleast contain Date and Sale)", type=["csv"])
|
|
|
294 |
|
295 |
st.title("Forecasted Sales")
|
296 |
|
297 |
+
# Plot
|
298 |
+
# plt.figure(figsize=(12,8))
|
299 |
+
# plt.plot(training_y[-80:])
|
300 |
+
# plt.plot(test_y, color = 'red', label = 'Actual Sales')
|
301 |
+
# plt.plot(fitted_series, color='darkgreen', label = 'Predicted Sales')
|
302 |
+
# plt.fill_between(lower_series.index,
|
303 |
+
# lower_series,
|
304 |
+
# upper_series,
|
305 |
+
# color='k', alpha=.15)
|
306 |
+
|
307 |
+
# plt.title("SARIMAX - Forecast of Retail Sales VS Actual Sales")
|
308 |
+
# plt.legend(loc='upper left', fontsize=8)
|
309 |
+
# plt.show()
|
310 |
+
|
311 |
+
trace_actual = go.Scatter(x=range(len(training_y) - 80, len(training_y)),
|
312 |
+
y=training_y[-80:],
|
313 |
+
mode='lines',
|
314 |
+
name='Training Data')
|
315 |
+
|
316 |
+
trace_actual_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(test_y)),
|
317 |
+
y=test_y,
|
318 |
+
mode='lines',
|
319 |
+
name='Actual Sales',
|
320 |
+
line=dict(color='red'))
|
321 |
+
|
322 |
+
trace_predicted_sales = go.Scatter(x=range(len(training_y), len(training_y) + len(fitted_series)),
|
323 |
+
y=fitted_series,
|
324 |
+
mode='lines',
|
325 |
+
name='Predicted Sales',
|
326 |
+
line=dict(color='darkgreen'))
|
327 |
+
|
328 |
+
trace_fill_between = go.Scatter(x=list(range(len(training_y), len(training_y) + len(lower_series))) +
|
329 |
+
list(range(len(training_y) + len(lower_series), len(training_y) + len(upper_series))),
|
330 |
+
y=list(lower_series) + list(upper_series)[::-1],
|
331 |
+
fill='toself',
|
332 |
+
fillcolor='rgba(0,100,80,0.2)',
|
333 |
+
line=dict(color='rgba(255,255,255,0)'),
|
334 |
+
name='Prediction Interval')
|
335 |
+
|
336 |
+
# Combine traces and create layout
|
337 |
+
data = [trace_actual, trace_actual_sales, trace_predicted_sales, trace_fill_between]
|
338 |
+
layout = go.Layout(title="SARIMAX - Forecast of Retail Sales VS Actual Sales",
|
339 |
+
legend=dict(x=0, y=1.0),
|
340 |
+
xaxis=dict(title='X-axis Label'),
|
341 |
+
yaxis=dict(title='Y-axis Label'))
|
342 |
+
fig_test = go.Figure(data=data, layout=layout)
|
343 |
+
st.plotly_chart(fig_test)
|
344 |
|
345 |
# Forecast (actual)
|
346 |
n_periods = forecast_period
|
|
|
355 |
future_upper_series = pd.Series(confint[:, 1], index=future_index_of_fc)
|
356 |
|
357 |
# Plot
|
358 |
+
# plt.figure(figsize=(12,8))
|
359 |
+
# plt.plot(df['Sales'][-50:])
|
360 |
+
# plt.plot(future_fitted_series, color='darkgreen')
|
361 |
+
# plt.fill_between(future_lower_series.index,
|
362 |
+
# future_lower_series,
|
363 |
+
# future_upper_series,
|
364 |
+
# color='k', alpha=.15)
|
365 |
+
|
366 |
+
# plt.title("SARIMA - Final Forecast of Retail Sales")
|
367 |
+
# plt.show()
|
368 |
+
|
369 |
+
# Create traces for each line and fill_between
|
370 |
+
trace_sales = go.Scatter(x=df.index[-50:],
|
371 |
+
y=df['Sales'][-50:],
|
372 |
+
mode='lines',
|
373 |
+
name='Sales')
|
374 |
+
|
375 |
+
trace_predicted_sales = go.Scatter(x=df.index[-50:] + future_fitted_series.index,
|
376 |
+
y=future_fitted_series,
|
377 |
+
mode='lines',
|
378 |
+
name='Predicted Sales',
|
379 |
+
line=dict(color='darkgreen'))
|
380 |
+
|
381 |
+
trace_fill_between = go.Scatter(x=list(df.index[-50:] + future_lower_series.index) +
|
382 |
+
list(df.index[-50:] + future_upper_series.index[::-1]),
|
383 |
+
y=list(future_lower_series) + list(future_upper_series)[::-1],
|
384 |
+
fill='toself',
|
385 |
+
fillcolor='rgba(0,100,80,0.2)',
|
386 |
+
line=dict(color='rgba(255,255,255,0)'),
|
387 |
+
name='Prediction Interval')
|
388 |
+
|
389 |
+
# Combine traces and create layout
|
390 |
+
data = [trace_sales, trace_predicted_sales, trace_fill_between]
|
391 |
+
layout = go.Layout(title="SARIMA - Final Forecast of Retail Sales",
|
392 |
+
legend=dict(x=0, y=1.0),
|
393 |
+
xaxis=dict(title='X-axis Label'),
|
394 |
+
yaxis=dict(title='Y-axis Label'))
|
395 |
+
fig_final = go.Figure(data=data, layout=layout)
|
396 |
+
st.plotly_chart(fig_final)
|
397 |
|
398 |
auto_sales_growth = sales_growth(df, future_fitted_series)
|
399 |
df = auto_sales_growth
|
|
|
404 |
st.write("Forecasted sales in the next 3 months")
|
405 |
st.write(df)
|
406 |
|
407 |
+
with st.form("question_form"):
|
408 |
+
question = st.text_input('Ask a Question about the Forecasted Data', placeholder="What is the total sales in the month of December?")
|
409 |
+
query_button = st.form_submit_button(label='Generate Answer')
|
410 |
+
|
411 |
+
if query_button:
|
412 |
answer = get_converted_answer(df, question)
|
413 |
st.write("The answer is:", answer)
|