Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
from paperqa import Docs, SentenceTransformerEmbeddingModel
|
3 |
+
from langchain_anthropic import ChatAnthropic
|
4 |
+
|
5 |
+
MODEL_NAME = "claude-3-5-sonnet-20240620"
|
6 |
+
class MyChatAnthropic(ChatAnthropic):
|
7 |
+
model_name = MODEL_NAME
|
8 |
+
llm = MyChatAnthropic(
|
9 |
+
model=MODEL_NAME,
|
10 |
+
temperature=0.2,
|
11 |
+
max_tokens=4096,)
|
12 |
+
|
13 |
+
class MyEmb(SentenceTransformerEmbeddingModel):
|
14 |
+
async def aembed_documents(self, texts):
|
15 |
+
return await self.embed_documents(None, texts)
|
16 |
+
|
17 |
+
emb = MyEmb(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
18 |
+
docs = Docs(llm="langchain",
|
19 |
+
embedding="langchain",
|
20 |
+
embedding_client=emb,
|
21 |
+
client=llm)
|
22 |
+
docs.max_concurrent = 1
|
23 |
+
docs.add('knowledge_extraction.csv', disable_check=True)
|
24 |
+
|
25 |
+
def respond(message):
|
26 |
+
return docs.query(messages).answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
"""
|
29 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
30 |
"""
|
31 |
+
demo = gr.ChatInterface(respond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
|
34 |
if __name__ == "__main__":
|