Spaces:
Running
Running
import torch | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
#from transformers import pipeline | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
import io | |
from random import choice | |
image_processor_tiny = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny") | |
model_tiny = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny") | |
image_processor_small = AutoImageProcessor.from_pretrained("hustvl/yolos-small") | |
model_small = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small") | |
import gradio as gr | |
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff", | |
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf", | |
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"] | |
fdic = { | |
"family" : "Impact", | |
"style" : "italic", | |
"size" : 15, | |
"color" : "yellow", | |
"weight" : "bold" | |
} | |
def get_figure(in_pil_img, in_results): | |
plt.figure(figsize=(16, 10)) | |
plt.imshow(in_pil_img) | |
ax = plt.gca() | |
for score, label, box in zip(in_results["scores"], in_results["labels"], in_results["boxes"]): | |
selected_color = choice(COLORS) | |
#box = [round(i, 2) for i in box.tolist()] | |
x, y, w, h = int(box[0]), int(box[1]), int(box[2]-box[0]), int(box[3]-box[1]) | |
print(x, y, w, h) | |
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3)) | |
ax.text(x, y, f"{model_tiny.config.id2label[label.item()]}: {round(score.item()*100, 1)}%", fontdict=fdic) | |
#print( | |
# f"Detected {model_tiny.config.id2label[label.item()]} with confidence " | |
# f"{round(score.item(), 3)} at location {box}" | |
#) | |
plt.axis("off") | |
return plt.gcf() | |
def infer(in_model, in_threshold, in_pil_img): | |
inputs = image_processor_tiny(images=in_pil_img, return_tensors="pt") | |
outputs = model_tiny(**inputs) | |
# convert outputs (bounding boxes and class logits) to COCO API | |
target_sizes = torch.tensor([in_pil_img.size[::-1]]) | |
results = image_processor_tiny.post_process_object_detection(outputs, threshold=in_threshold, target_sizes=target_sizes)[ | |
0 | |
] | |
print(results) | |
figure = get_figure(in_pil_img, results) | |
buf = io.BytesIO() | |
figure.savefig(buf, bbox_inches='tight') | |
buf.seek(0) | |
output_pil_img = Image.open(buf) | |
return output_pil_img | |
with gr.Blocks(title="YOLOS Object Detection - ClassCat", | |
css=".gradio-container {background:lightyellow;}" | |
) as demo: | |
#sample_index = gr.State([]) | |
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">YOLOS Object Detection</div>""") | |
gr.HTML("""<h4 style="color:navy;">1. Select a model.</h4>""") | |
model = gr.Radio(["yolos-tiny", "yolos-small"], value="yolos-tiny") | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">2-a. Select an example by clicking a thumbnail below.</h4>""") | |
gr.HTML("""<h4 style="color:navy;">2-b. Or upload an image by clicking on the canvas.</h4>""") | |
with gr.Row(): | |
input_image = gr.Image(label="Input image", type="pil") | |
output_image = gr.Image(label="Output image with predicted instances", type="pil") | |
gr.Examples(['samples/cats.jpg', 'samples/detectron2.png', 'samples/cat.jpg', 'samples/hotdog.jpg'], inputs=input_image) | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">3. Set threshold value (default to 0.9)</h4>""") | |
threshold = gr.Slider(0, 1.0, value=0.9, label='threshold') | |
gr.HTML("""<br/>""") | |
gr.HTML("""<h4 style="color:navy;">4. Then, click "Infer" button to predict object instances. It will take about 10 seconds (on cpu)</h4>""") | |
send_btn = gr.Button("Infer") | |
send_btn.click(fn=infer, inputs=[model, threshold, input_image], outputs=[output_image]) | |
#demo.queue() | |
demo.launch(debug=True) | |
### EOF ### | |