Spaces:
Running
Running
add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
5 |
+
#from transformers import pipeline
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import matplotlib.patches as patches
|
10 |
+
|
11 |
+
import io
|
12 |
+
from random import choice
|
13 |
+
|
14 |
+
|
15 |
+
image_processor_tiny = AutoImageProcessor.from_pretrained("hustvl/yolos-tiny")
|
16 |
+
model_tiny = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")
|
17 |
+
|
18 |
+
image_processor_small = AutoImageProcessor.from_pretrained("hustvl/yolos-small")
|
19 |
+
model_small = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-small")
|
20 |
+
|
21 |
+
|
22 |
+
import gradio as gr
|
23 |
+
|
24 |
+
|
25 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
26 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
27 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
28 |
+
|
29 |
+
fdic = {
|
30 |
+
"family" : "Impact",
|
31 |
+
"style" : "italic",
|
32 |
+
"size" : 15,
|
33 |
+
"color" : "yellow",
|
34 |
+
"weight" : "bold"
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
def get_figure(in_pil_img, in_results):
|
39 |
+
plt.figure(figsize=(16, 10))
|
40 |
+
plt.imshow(in_pil_img)
|
41 |
+
ax = plt.gca()
|
42 |
+
|
43 |
+
for score, label, box in zip(in_results["scores"], in_results["labels"], in_results["boxes"]):
|
44 |
+
selected_color = choice(COLORS)
|
45 |
+
|
46 |
+
#box = [round(i, 2) for i in box.tolist()]
|
47 |
+
x, y, w, h = int(box[0]), int(box[1]), int(box[2]-box[0]), int(box[3]-box[1])
|
48 |
+
print(x, y, w, h)
|
49 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
50 |
+
ax.text(x, y, f"{model_tiny.config.id2label[label.item()]}: {round(score.item()*100, 1)}%", fontdict=fdic)
|
51 |
+
#print(
|
52 |
+
# f"Detected {model_tiny.config.id2label[label.item()]} with confidence "
|
53 |
+
# f"{round(score.item(), 3)} at location {box}"
|
54 |
+
#)
|
55 |
+
|
56 |
+
plt.axis("off")
|
57 |
+
|
58 |
+
return plt.gcf()
|
59 |
+
|
60 |
+
|
61 |
+
def infer(in_model, in_threshold, in_pil_img):
|
62 |
+
print(type(in_pil_img))
|
63 |
+
print(threshold)
|
64 |
+
inputs = image_processor_tiny(images=in_pil_img, return_tensors="pt")
|
65 |
+
outputs = model_tiny(**inputs)
|
66 |
+
|
67 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
68 |
+
target_sizes = torch.tensor([in_pil_img.size[::-1]])
|
69 |
+
results = image_processor_tiny.post_process_object_detection(outputs, threshold=in_threshold, target_sizes=target_sizes)[
|
70 |
+
0
|
71 |
+
]
|
72 |
+
print(results)
|
73 |
+
|
74 |
+
figure = get_figure(in_pil_img, results)
|
75 |
+
|
76 |
+
buf = io.BytesIO()
|
77 |
+
figure.savefig(buf, bbox_inches='tight')
|
78 |
+
buf.seek(0)
|
79 |
+
output_pil_img = Image.open(buf)
|
80 |
+
|
81 |
+
return output_pil_img
|
82 |
+
|
83 |
+
|
84 |
+
#from transformers.models.flava import modeling_flava
|
85 |
+
with gr.Blocks(css=".gradio-container {background:lightyellow;color:red;}", title="テスト"
|
86 |
+
) as demo:
|
87 |
+
#sample_index = gr.State([])
|
88 |
+
|
89 |
+
gr.HTML('<div style="font-size:12pt; text-align:center; color:yellow;">MNIST 分類器</div>')
|
90 |
+
|
91 |
+
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
input_image = gr.Image(label="", type="pil")
|
95 |
+
output_image = gr.Image(type="pil")
|
96 |
+
|
97 |
+
|
98 |
+
threshold = gr.Slider(0, 1.0, value=0.9, label='threshold')
|
99 |
+
|
100 |
+
send_btn = gr.Button("予測する")
|
101 |
+
send_btn.click(fn=infer, inputs=[model, threshold, input_image], outputs=[output_image])
|
102 |
+
|
103 |
+
#demo.queue()
|
104 |
+
demo.launch(debug=True)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
### EOF ###
|