File size: 10,818 Bytes
a59ff79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import csv
import easyocr
import shutil
import random
import cv2
from glob import glob
from ultralytics import YOLOv10
import random
from glob import glob
from ultralytics import YOLOv10
import supervision as sva
from ultralytics import YOLOv10
import supervision as sv
import supervision as sv
from flask import Flask, request, jsonify, send_from_directory, render_template
import textwrap
app = Flask(__name__)
def enhance_contrast(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized_image = cv2.equalizeHist(gray_image)
return equalized_image
def calculate_iou(bbox1, bbox2):
x1_max = max(bbox1[0], bbox2[0])
y1_max = max(bbox1[1], bbox2[1])
x2_min = min(bbox1[2], bbox2[2])
y2_min = min(bbox1[3], bbox2[3])
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
return iou
cropped_dir = "./app/cropped_images/"
if os.path.exists(cropped_dir):
shutil.rmtree(cropped_dir)
os.makedirs(cropped_dir, exist_ok=True)
output_dir1 = "./app/Folder1"
output_dir2 = "./app/Folder2"
output_dir3 = "./app/Folder3"
UPLOAD_FOLDER = "./app/data1"
os.makedirs(output_dir1, exist_ok=True)
os.makedirs(output_dir2, exist_ok=True)
os.makedirs(output_dir3, exist_ok=True)
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
@app.route('/')
def index():
return render_template('index3.html') # This will serve your HTML page
@app.route('/upload', methods=['POST'])
def upload_file():
if 'invoice-upload' not in request.files:
return jsonify({'error': 'No file part'}), 400
file = request.files['invoice-upload']
if file.filename == '':
return jsonify({'error': 'No selected file'}), 400
if file:
file_path = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(file_path)
output_image, output_csv = process_image()
return jsonify({
'image_path': output_image,
'csv_path': output_csv
})
def process_image():
print("Current working directory:", os.getcwd())
# Check contents in the root directory
print("Current directory contents:", os.listdir('/'))
model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
dataset = sv.DetectionDataset.from_yolo(
images_directory_path=f"./data/MyNewVersion5.0Dataset/valid/images",
annotations_directory_path=f"./data/MyNewVersion5.0Dataset/valid/labels",
data_yaml_path=f"./data/MyNewVersion5.0Dataset/data.yaml"
)
bounding_box_annotator = sv.BoundingBoxAnnotator()
label_annotator = sv.LabelAnnotator()
image_dir = "./app/data1"
files = os.listdir('./app/data1')
files.sort()
files = files[0:100]
print(files)
counter = 0
for ii in files:
random_image_data = cv2.imread('./app/data1/' + ii)
random_image_data1 = cv2.imread('./app/data1/' + ii)
results = model(source='./app/data1/' + ii, conf=0.07)[0]
detections = sv.Detections.from_ultralytics(results)
annotated_image = bounding_box_annotator.annotate(scene=random_image_data, detections=detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
save_path = "./app/Folder1/" + "detection" + ii
cv2.imwrite(save_path, annotated_image)
print(f"Annotated image saved at {save_path}")
bounding_boxes = results.boxes.xyxy.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy()
confidences = results.boxes.conf.cpu().numpy()
bounding_box_save_path = "./bounding_boxes.txt"
with open(bounding_box_save_path, 'w') as f:
for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
x1, y1, x2, y2 = map(int, bbox)
f.write(f"Object {i + 1}: Class {class_id}, Confidence: {confidence:.2f}, "
f"Bounding box: ({x1}, {y1}, {x2}, {y2})\n")
cropped_image = random_image_data1[y1:y2, x1:x2]
cropped_image_path = os.path.join(cropped_dir, f"cropped_object_{i + 1}.jpg")
cv2.imwrite(cropped_image_path, cropped_image)
print(f"Enhanced cropped image saved at {cropped_image_path}")
print(f"Checking contents of /app/data: {bounding_box_save_path}")
print(f"Directory listing: {os.listdir('./app/Folder1')}")
print(f"Bounding box coordinates saved at {bounding_box_save_path}")
try:
reader = easyocr.Reader(['en'],recog_network='en_sample',model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model', user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
except Exception as e:
print(f"Error initializing EasyOCR Reader: {e}")
raise
reader = easyocr.Reader(
['en'],
recog_network='en_sample',
model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model',
user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
import re
input_file_path = './bounding_boxes.txt'
cropped_images_folder = './app/cropped_images/'
output_csv_path = './Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
print(f"Checking contents of ./app/data: {bounding_box_save_path}")
print(f"Directory listing: {os.listdir('./app/data')}")
with open(input_file_path, 'r') as infile:
lines = infile.readlines()
with open(output_csv_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
csv_writer.writerow(['Object ID', 'Bounding Box', 'Image Name', 'Recognized Text'])
for i, line in enumerate(lines):
object_id = f"Object_{i + 1}"
bounding_box_info = line.strip()
cropped_image_name = f"cropped_object_{i + 1}.jpg"
cropped_image_path = os.path.join(cropped_images_folder, cropped_image_name)
if os.path.exists(cropped_image_path):
bbox_match = re.search(r"Bounding box: \((\d+), (\d+), (\d+), (\d+)\)", bounding_box_info)
if bbox_match:
x1, y1, x2, y2 = map(int, bbox_match.groups())
detected_boxes = [[x1, x2, y1, y2]]
else:
print("No bounding box found in the info.")
cropped_image = cv2.imread(cropped_image_path, cv2.IMREAD_GRAYSCALE)
horizontal_list1, free_list1 = reader.detect(cropped_image)
free_list1 = free_list1 if free_list1 is not None else []
horizontal_list1 = [box for sublist in horizontal_list1 for box in sublist]
free_list1 = []
horizontal_list_for_recognize = detected_boxes if not horizontal_list1 else horizontal_list1
if horizontal_list1:
result = reader.recognize(cropped_image, detail=0, horizontal_list=horizontal_list1,
free_list=free_list1)
else:
result = reader.recognize(random_image_data1, detail=0, horizontal_list=detected_boxes,
free_list=free_list1)
recognized_text = ' '.join(result) if result else ''
else:
recognized_text = 'No image found'
csv_writer.writerow([object_id, bounding_box_info, cropped_image_name, recognized_text])
print(f"CSV file with recognition results saved at {output_csv_path}")
def calculate_iou(bbox1, bbox2):
x1_max = max(bbox1[0], bbox2[0])
y1_max = max(bbox1[1], bbox2[1])
x2_min = min(bbox1[2], bbox2[2])
y2_min = min(bbox1[3], bbox2[3])
inter_area = max(0, x2_min - x1_max) * max(0, y2_min - y1_max)
bbox1_area = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
bbox2_area = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
iou = inter_area / float(bbox1_area + bbox2_area - inter_area) if (bbox1_area + bbox2_area - inter_area) > 0 else 0
return iou
image_path = "/data1" + ii
csv_file_path = output_csv_path = '/Folder2/' + ii + 'bounding_boxes_with_recognition.csv'
image = cv2.imread(image_path)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.3
font_thickness = 2
color = (255, 0, 255)
bboxes = []
recognized_texts = []
with open(csv_file_path, 'r', encoding='utf-8') as csvfile:
csv_reader = csv.DictReader(csvfile)
for row in csv_reader:
bbox_match = re.search(r'\((\d+), (\d+), (\d+), (\d+)\)', row['Bounding Box'])
if bbox_match:
bbox = [int(bbox_match.group(i)) for i in range(1, 5)]
bboxes.append(bbox)
recognized_texts.append(row['Recognized Text'])
filtered_bboxes = []
filtered_texts = []
iou_threshold = 0.4
for i, bbox1 in enumerate(bboxes):
keep = True
for j, bbox2 in enumerate(filtered_bboxes):
if calculate_iou(bbox1, bbox2) > iou_threshold:
keep = False
break
if keep:
filtered_bboxes.append(bbox1)
filtered_texts.append(recognized_texts[i])
for bbox, recognized_text in zip(filtered_bboxes, filtered_texts):
x1, y1, x2, y2 = bbox
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
max_chars_per_line = 60
wrapped_text = textwrap.wrap(recognized_text, width=max_chars_per_line)
text_y = y1 - 10 if y1 - 10 > 10 else y1 + 10
for line in wrapped_text:
cv2.putText(image, line, (x1, text_y), font, font_scale, color, font_thickness)
text_y += int(font_scale * 20)
output_image_path = "/Folder3/" + "annotated" + ii + ".png"
cv2.imwrite(output_image_path, image)
print(f"Annotated image saved at {output_image_path}")
counter += 1
@app.route('/download_csv/<filename>')
def download_csv(filename):
return send_from_directory(output_dir2, filename, as_attachment=True)
@app.route('/download_image/<filename>')
def download_image(filename):
return send_from_directory(output_dir3, filename, as_attachment=True)
|