CloudAnts commited on
Commit
6d9209a
·
1 Parent(s): 24fa350
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -39,15 +39,15 @@ def calculate_iou(bbox1, bbox2):
39
  return iou
40
 
41
 
42
- cropped_dir = "D:/demo/OCR-Project/cropped_images/"
43
  if os.path.exists(cropped_dir):
44
  shutil.rmtree(cropped_dir)
45
  os.makedirs(cropped_dir, exist_ok=True)
46
 
47
- output_dir1 = "D:/demo/OCR-Project/Folder1"
48
- output_dir2 = "D:/demo/OCR-Project/Folder2"
49
- output_dir3 = "D:/demo/OCR-Project/Folder3"
50
- UPLOAD_FOLDER = "D:/demo/OCR-Project/data1"
51
  os.makedirs(output_dir1, exist_ok=True)
52
  os.makedirs(output_dir2, exist_ok=True)
53
  os.makedirs(output_dir3, exist_ok=True)
@@ -82,14 +82,14 @@ def process_image():
82
 
83
  model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
84
  dataset = sv.DetectionDataset.from_yolo(
85
- images_directory_path=f"/data/MyNewVersion5.0Dataset/valid/images",
86
- annotations_directory_path=f"/data/MyNewVersion5.0Dataset/valid/labels",
87
- data_yaml_path=f"/data/MyNewVersion5.0Dataset/data.yaml"
88
  )
89
  bounding_box_annotator = sv.BoundingBoxAnnotator()
90
  label_annotator = sv.LabelAnnotator()
91
  image_dir = "./data1"
92
- files = os.listdir('/data1')
93
  files.sort()
94
  files = files[0:100]
95
  print(files)
@@ -107,7 +107,7 @@ def process_image():
107
  bounding_boxes = results.boxes.xyxy.cpu().numpy()
108
  class_ids = results.boxes.cls.cpu().numpy()
109
  confidences = results.boxes.conf.cpu().numpy()
110
- bounding_box_save_path = "/bounding_boxes.txt"
111
  with open(bounding_box_save_path, 'w') as f:
112
  for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
113
  x1, y1, x2, y2 = map(int, bbox)
@@ -121,8 +121,8 @@ def process_image():
121
  reader = easyocr.Reader(
122
  ['en'],
123
  recog_network='en_sample',
124
- model_storage_directory='/EasyOCR-Trainer/EasyOCR/easyocr/model',
125
- user_network_directory='/EasyOCR-Trainer/EasyOCR/user_network')
126
  import re
127
  input_file_path = '/bounding_boxes.txt'
128
  cropped_images_folder = '/cropped_images/'
 
39
  return iou
40
 
41
 
42
+ cropped_dir = "./cropped_images/"
43
  if os.path.exists(cropped_dir):
44
  shutil.rmtree(cropped_dir)
45
  os.makedirs(cropped_dir, exist_ok=True)
46
 
47
+ output_dir1 = "./Folder1"
48
+ output_dir2 = "./Folder2"
49
+ output_dir3 = "./Folder3"
50
+ UPLOAD_FOLDER = "./data1"
51
  os.makedirs(output_dir1, exist_ok=True)
52
  os.makedirs(output_dir2, exist_ok=True)
53
  os.makedirs(output_dir3, exist_ok=True)
 
82
 
83
  model = YOLOv10(f'./runs/detect/train3/weights/best (1).pt')
84
  dataset = sv.DetectionDataset.from_yolo(
85
+ images_directory_path=f"./data/MyNewVersion5.0Dataset/valid/images",
86
+ annotations_directory_path=f"./data/MyNewVersion5.0Dataset/valid/labels",
87
+ data_yaml_path=f"./data/MyNewVersion5.0Dataset/data.yaml"
88
  )
89
  bounding_box_annotator = sv.BoundingBoxAnnotator()
90
  label_annotator = sv.LabelAnnotator()
91
  image_dir = "./data1"
92
+ files = os.listdir('./data1')
93
  files.sort()
94
  files = files[0:100]
95
  print(files)
 
107
  bounding_boxes = results.boxes.xyxy.cpu().numpy()
108
  class_ids = results.boxes.cls.cpu().numpy()
109
  confidences = results.boxes.conf.cpu().numpy()
110
+ bounding_box_save_path = "./bounding_boxes.txt"
111
  with open(bounding_box_save_path, 'w') as f:
112
  for i, (bbox, class_id, confidence) in enumerate(zip(bounding_boxes, class_ids, confidences)):
113
  x1, y1, x2, y2 = map(int, bbox)
 
121
  reader = easyocr.Reader(
122
  ['en'],
123
  recog_network='en_sample',
124
+ model_storage_directory='./EasyOCR-Trainer/EasyOCR/easyocr/model',
125
+ user_network_directory='./EasyOCR-Trainer/EasyOCR/user_network')
126
  import re
127
  input_file_path = '/bounding_boxes.txt'
128
  cropped_images_folder = '/cropped_images/'