TuringsSolutions's picture
Update app.py
5d16554 verified
raw
history blame
1.22 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/Phi3LawCaseManagement", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/Phi3LawCaseManagement", trust_remote_code=True)
def predict(prompt, temperature, max_tokens):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=[
gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature"),
gr.inputs.Slider(minimum=10, maximum=200, default=50, step=10, label="Number of Output Tokens")
],
outputs="text",
title="Phi3 Law Case Management Model",
description="A model to assist with law case management. Adjust the temperature and number of output tokens as needed."
)
# Launch the Gradio app
iface.launch()