Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig | |
# Load the model and tokenizer | |
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction") | |
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction") | |
def correct_text(text, max_length, min_length, max_new_tokens, min_new_tokens, num_beams, temperature, top_p): | |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") | |
if max_new_tokens > 0 or min_new_tokens > 0: | |
if max_new_tokens > 0 and min_new_tokens > 0: | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=max_new_tokens, | |
min_new_tokens=min_new_tokens, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True, | |
do_sample=True | |
) | |
elif max_new_tokens > 0: | |
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True) | |
else: | |
outputs = model.generate(inputs, max_length=max_length, min_new_tokens=min_new_tokens, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True) | |
else: | |
outputs = model.generate( | |
inputs, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True, | |
do_sample=True | |
) | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield corrected_text | |
def correct_text2(text, genConfig): | |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") | |
outputs = model.generate(inputs, **genConfig.to_dict()) | |
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
yield corrected_text | |
def respond(text, max_length, min_length, max_new_tokens, min_new_tokens, num_beams, temperature, top_p): | |
config = GenerationConfig( | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
temperature=temperature, | |
top_p=top_p, | |
early_stopping=True, | |
do_sample=True | |
) | |
# Add max/min new tokens if they are there | |
if max_new_tokens > 0: | |
config.max_new_tokens = max_new_tokens | |
if min_new_tokens > 0: | |
config.min_new_tokens = min_new_tokens | |
corrected = correct_text2(text, config) | |
yield corrected | |
def update_prompt(prompt): | |
return prompt | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("""# Grammar Correction App""") | |
prompt_box = gr.Textbox(placeholder="Enter your prompt here...") | |
output_box = gr.Textbox() | |
# Sample prompts | |
with gr.Row(): | |
samp1 = gr.Button("we shood buy an car") | |
samp2 = gr.Button("she is more taller") | |
samp3 = gr.Button("John and i saw a sheep over their.") | |
samp1.click(update_prompt, samp1, prompt_box) | |
samp2.click(update_prompt, samp2, prompt_box) | |
samp3.click(update_prompt, samp3, prompt_box) | |
submitBtn = gr.Button("Submit") | |
with gr.Accordion("Generation Parameters:", open=False): | |
max_length = gr.Slider(minimum=1, maximum=256, value=80, step=1, label="Max Length") | |
min_length = gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length") | |
max_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens") | |
min_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Min New Tokens") | |
num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams") | |
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
submitBtn.click(respond, [prompt_box, max_length, min_length, max_tokens, min_tokens, num_beams, temperature, top_p], output_box) | |
demo.launch() |