GrammarBlocks / app.py
ColeGuion's picture
Update app.py
ad8550a verified
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
# Load the model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis")
tokenizer = AutoTokenizer.from_pretrained("pszemraj/flan-t5-large-grammar-synthesis")
def correct_text(text, genConfig):
inputs = tokenizer.encode("" + text, return_tensors="pt")
outputs = model.generate(inputs, **genConfig.to_dict())
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return corrected_text
def respond(text, max_new_tokens, min_new_tokens, num_beams, num_beam_groups, temperature, top_k, top_p, no_repeat_ngram_size, guidance_scale, do_sample: bool):
config = GenerationConfig(
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
temperature=float(temperature),
top_k=top_k,
top_p=float(top_p),
no_repeat_ngram_size=no_repeat_ngram_size,
early_stopping=True,
do_sample=do_sample
)
if guidance_scale > 0:
config.guidance_scale = float(guidance_scale)
corrected = correct_text(text, config)
yield corrected
def update_prompt(prompt):
return prompt
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# Grammar Correction App""")
prompt_box = gr.Textbox(placeholder="Enter your prompt here...")
output_box = gr.Textbox()
# Sample prompts
with gr.Row():
samp1 = gr.Button("we shood buy an car")
samp2 = gr.Button("she is more taller")
samp3 = gr.Button("John and i saw a sheep over their.")
samp1.click(update_prompt, samp1, prompt_box)
samp2.click(update_prompt, samp2, prompt_box)
samp3.click(update_prompt, samp3, prompt_box)
submitBtn = gr.Button("Submit")
with gr.Accordion("Generation Parameters:", open=False):
max_tokens = gr.Slider(minimum=1, maximum=256, value=50, step=1, label="Max New Tokens")
min_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Min New Tokens")
num_beams = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Num Beams")
beam_groups = gr.Slider(minimum=1, maximum=20, value=1, step=1, label="Num Beams Groups")
temperature = gr.Slider(minimum=0.1, maximum=100.0, value=0.7, step=0.1, label="Temperature")
top_k = gr.Slider(minimum=0, maximum=200, value=50, step=1, label="Top-k")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=1.0, step=0.05, label="Top-p (nucleus sampling)")
guideScale = gr.Slider(minimum=0.1, maximum=50.0, value=1.0, step=0.1, label="Guidance Scale")
no_repeat_ngram_size = gr.Slider(0, 20, value=0, step=1, label="Limit N-grams of given Size")
do_sample = gr.Checkbox(value=True, label="Do Sampling")
submitBtn.click(respond, [prompt_box, max_tokens, min_tokens, num_beams, beam_groups, temperature, top_k, top_p, no_repeat_ngram_size, guideScale, do_sample], output_box)
demo.launch()