ColeGuion commited on
Commit
95f281d
1 Parent(s): 5aafc6e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -23
app.py CHANGED
@@ -5,20 +5,25 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
5
  model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
6
  tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
7
 
8
- def correct_text(text, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
9
  inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
10
 
11
- if max_new_tokens > 0:
12
- outputs = model.generate(
13
- inputs,
14
- max_length=max_length,
15
- max_new_tokens=max_new_tokens,
16
- min_length=min_length,
17
- num_beams=num_beams,
18
- temperature=temperature,
19
- top_p=top_p,
20
- early_stopping=True
21
- )
 
 
 
 
 
22
  else:
23
  outputs = model.generate(
24
  inputs,
@@ -27,19 +32,13 @@ def correct_text(text, max_length, min_length, max_new_tokens, num_beams, temper
27
  num_beams=num_beams,
28
  temperature=temperature,
29
  top_p=top_p,
30
- early_stopping=True
 
31
  )
32
 
33
  corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
34
  yield corrected_text
35
 
36
- def respond(prompt, max_length, min_length, max_new_tokens, num_beams, temperature, top_p):
37
- # Your response generation logic here
38
- #response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
39
- #yield response
40
- #return f"System message: {system_message}, Max Length: {max_length}, Min Length: {min_length}, Max new tokens: {max_new_tokens}, Num Beams: {num_beams}, Temperature: {temperature}, Top-p: {top_p}"
41
- #response = correct_text(prompt, max_length, max_new_tokens, min_length, num_beams, temperature, top_p)
42
- return prompt
43
 
44
  def update_prompt(prompt):
45
  return prompt
@@ -68,14 +67,14 @@ with gr.Blocks() as demo:
68
  with gr.Accordion("Generation Parameters:", open=False):
69
  max_length = gr.Slider(minimum=1, maximum=256, value=80, step=1, label="Max Length")
70
  min_length = gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length")
71
- max_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max new tokens")
 
72
  num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams")
73
  temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
74
  top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
75
 
76
 
77
-
78
- submitBtn.click(correct_text, [prompt_box, max_length, min_length, max_tokens, num_beams, temperature, top_p], output_box)
79
 
80
 
81
 
 
5
  model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
6
  tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
7
 
8
+ def correct_text(text, max_length, min_length, max_new_tokens, min_new_tokens, num_beams, temperature, top_p):
9
  inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
10
 
11
+ if max_new_tokens > 0 or min_new_tokens > 0:
12
+ if max_new_tokens > 0 and min_new_tokens > 0:
13
+ outputs = model.generate(
14
+ inputs,
15
+ max_new_tokens=max_new_tokens,
16
+ min_new_tokens=min_new_tokens,
17
+ num_beams=num_beams,
18
+ temperature=temperature,
19
+ top_p=top_p,
20
+ early_stopping=True,
21
+ do_sample=True
22
+ )
23
+ elif max_new_tokens > 0:
24
+ outputs = model.generate(inputs, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True)
25
+ else:
26
+ outputs = model.generate(inputs, max_length=max_length, min_new_tokens=min_new_tokens, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True)
27
  else:
28
  outputs = model.generate(
29
  inputs,
 
32
  num_beams=num_beams,
33
  temperature=temperature,
34
  top_p=top_p,
35
+ early_stopping=True,
36
+ do_sample=True
37
  )
38
 
39
  corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
40
  yield corrected_text
41
 
 
 
 
 
 
 
 
42
 
43
  def update_prompt(prompt):
44
  return prompt
 
67
  with gr.Accordion("Generation Parameters:", open=False):
68
  max_length = gr.Slider(minimum=1, maximum=256, value=80, step=1, label="Max Length")
69
  min_length = gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length")
70
+ max_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens")
71
+ min_tokens = gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Min New Tokens")
72
  num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams")
73
  temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
74
  top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
75
 
76
 
77
+ submitBtn.click(correct_text, [prompt_box, max_length, min_length, max_tokens, min_tokens, num_beams, temperature, top_p], output_box)
 
78
 
79
 
80