Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,41 +5,8 @@ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, GenerationConfig
|
|
5 |
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
|
6 |
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
|
7 |
|
8 |
-
def correct_text(text, max_length, min_length, max_new_tokens, min_new_tokens, num_beams, temperature, top_p):
|
9 |
-
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
10 |
-
|
11 |
-
if max_new_tokens > 0 or min_new_tokens > 0:
|
12 |
-
if max_new_tokens > 0 and min_new_tokens > 0:
|
13 |
-
outputs = model.generate(
|
14 |
-
inputs,
|
15 |
-
max_new_tokens=max_new_tokens,
|
16 |
-
min_new_tokens=min_new_tokens,
|
17 |
-
num_beams=num_beams,
|
18 |
-
temperature=temperature,
|
19 |
-
top_p=top_p,
|
20 |
-
early_stopping=True,
|
21 |
-
do_sample=True
|
22 |
-
)
|
23 |
-
elif max_new_tokens > 0:
|
24 |
-
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True)
|
25 |
-
else:
|
26 |
-
outputs = model.generate(inputs, max_length=max_length, min_new_tokens=min_new_tokens, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True, do_sample=True)
|
27 |
-
else:
|
28 |
-
outputs = model.generate(
|
29 |
-
inputs,
|
30 |
-
max_length=max_length,
|
31 |
-
min_length=min_length,
|
32 |
-
num_beams=num_beams,
|
33 |
-
temperature=temperature,
|
34 |
-
top_p=top_p,
|
35 |
-
early_stopping=True,
|
36 |
-
do_sample=True
|
37 |
-
)
|
38 |
-
|
39 |
-
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
-
yield corrected_text
|
41 |
|
42 |
-
def
|
43 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
44 |
outputs = model.generate(inputs, **genConfig.to_dict())
|
45 |
|
@@ -64,11 +31,9 @@ def respond(text, max_length, min_length, max_new_tokens, min_new_tokens, num_be
|
|
64 |
if min_new_tokens > 0:
|
65 |
config.min_new_tokens = min_new_tokens
|
66 |
|
67 |
-
corrected =
|
68 |
yield corrected
|
69 |
|
70 |
-
|
71 |
-
|
72 |
def update_prompt(prompt):
|
73 |
return prompt
|
74 |
|
@@ -87,7 +52,6 @@ with gr.Blocks() as demo:
|
|
87 |
samp1.click(update_prompt, samp1, prompt_box)
|
88 |
samp2.click(update_prompt, samp2, prompt_box)
|
89 |
samp3.click(update_prompt, samp3, prompt_box)
|
90 |
-
|
91 |
submitBtn = gr.Button("Submit")
|
92 |
|
93 |
with gr.Accordion("Generation Parameters:", open=False):
|
@@ -102,6 +66,6 @@ with gr.Blocks() as demo:
|
|
102 |
|
103 |
|
104 |
|
105 |
-
submitBtn.click(respond, [prompt_box, max_length, min_length, max_tokens, min_tokens, num_beams, temperature, top_p], output_box)
|
106 |
|
107 |
demo.launch()
|
|
|
5 |
model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction")
|
6 |
tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def correct_text(text, genConfig):
|
10 |
inputs = tokenizer.encode("grammar: " + text, return_tensors="pt")
|
11 |
outputs = model.generate(inputs, **genConfig.to_dict())
|
12 |
|
|
|
31 |
if min_new_tokens > 0:
|
32 |
config.min_new_tokens = min_new_tokens
|
33 |
|
34 |
+
corrected = correct_text(text, config)
|
35 |
yield corrected
|
36 |
|
|
|
|
|
37 |
def update_prompt(prompt):
|
38 |
return prompt
|
39 |
|
|
|
52 |
samp1.click(update_prompt, samp1, prompt_box)
|
53 |
samp2.click(update_prompt, samp2, prompt_box)
|
54 |
samp3.click(update_prompt, samp3, prompt_box)
|
|
|
55 |
submitBtn = gr.Button("Submit")
|
56 |
|
57 |
with gr.Accordion("Generation Parameters:", open=False):
|
|
|
66 |
|
67 |
|
68 |
|
69 |
+
submitBtn.click(respond, [prompt_box, max_length, min_length, max_tokens, min_tokens, num_beams, temperature, top_k, top_p], output_box)
|
70 |
|
71 |
demo.launch()
|