import gradio as gr from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction") tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction") def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p): inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") if max_new_tokens > 0: outputs = model.generate( inputs, max_length=max_length, max_new_tokens=max_new_tokens, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True ) else: outputs = model.generate( inputs, max_length=max_length, min_length=min_length, num_beams=num_beams, temperature=temperature, top_p=top_p, early_stopping=True ) corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return corrected_text def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p): response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p) yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"), gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"), gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"), gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()