Spaces:
Sleeping
Sleeping
updated pinecone
Browse files
app.py
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
import re
|
2 |
import torch
|
3 |
-
import time
|
4 |
-
import pinecone
|
5 |
import pickle
|
6 |
import os
|
7 |
import numpy as np
|
@@ -16,6 +13,7 @@ from peft import PeftModel
|
|
16 |
from bs4 import BeautifulSoup
|
17 |
import requests
|
18 |
import logging
|
|
|
19 |
|
20 |
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO)
|
21 |
|
@@ -25,6 +23,17 @@ headers = {
|
|
25 |
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ",
|
26 |
}
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def google_search(text):
|
30 |
logging.info(f"Google search on: {text}")
|
@@ -50,19 +59,6 @@ def google_search(text):
|
|
50 |
|
51 |
return ans
|
52 |
|
53 |
-
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
54 |
-
|
55 |
-
pinecone.init(api_key=PINECONE_API_KEY, environment="gcp-starter")
|
56 |
-
|
57 |
-
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
58 |
-
|
59 |
-
CACHE_DIR = "./.cache"
|
60 |
-
INDEX_NAME = "k8s-semantic-search"
|
61 |
-
|
62 |
-
if not os.path.exists(CACHE_DIR):
|
63 |
-
os.makedirs(CACHE_DIR)
|
64 |
-
|
65 |
-
|
66 |
def cached(func):
|
67 |
def wrapper(*args, **kwargs):
|
68 |
SEP = "$|$"
|
@@ -87,27 +83,18 @@ def cached(func):
|
|
87 |
|
88 |
return wrapper
|
89 |
|
90 |
-
|
91 |
@cached
|
92 |
def create_embedding(text: str):
|
93 |
embed_text = sentencetransformer_model.encode(text)
|
94 |
|
95 |
return embed_text.tolist()
|
96 |
|
97 |
-
|
98 |
-
index = pinecone.Index(INDEX_NAME)
|
99 |
-
|
100 |
-
|
101 |
def query_from_pinecone(query, top_k=3):
|
102 |
embedding = create_embedding(query)
|
103 |
if not embedding:
|
104 |
return None
|
105 |
|
106 |
-
return
|
107 |
-
|
108 |
-
|
109 |
-
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
110 |
-
|
111 |
|
112 |
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
113 |
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
|
@@ -154,7 +141,6 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
154 |
|
155 |
return final_results
|
156 |
|
157 |
-
|
158 |
def semantic_search(prompt):
|
159 |
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
|
160 |
if not final_results:
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import pickle
|
3 |
import os
|
4 |
import numpy as np
|
|
|
13 |
from bs4 import BeautifulSoup
|
14 |
import requests
|
15 |
import logging
|
16 |
+
from pinecone import Pinecone, ServerlessSpec
|
17 |
|
18 |
logging.basicConfig(format='[%(asctime)s] %(message)s', datefmt='%d-%b-%y %H:%M:%S', level=logging.INFO)
|
19 |
|
|
|
23 |
"Cookie": "CONSENT=YES+cb.20210418-17-p0.it+FX+917; ",
|
24 |
}
|
25 |
|
26 |
+
PINECONE_INDEX_NAME = "kubwizzard"
|
27 |
+
PINECONE_API_KEY = os.environ.get("PINECONE_API_KEY")
|
28 |
+
INDEX_NAME = "k8s-semantic-search"
|
29 |
+
CACHE_DIR = "./.cache"
|
30 |
+
|
31 |
+
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2")
|
32 |
+
pinecone_client = Pinecone(api_key=PINECONE_API_KEY)
|
33 |
+
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
34 |
+
|
35 |
+
if not os.path.exists(CACHE_DIR):
|
36 |
+
os.makedirs(CACHE_DIR)
|
37 |
|
38 |
def google_search(text):
|
39 |
logging.info(f"Google search on: {text}")
|
|
|
59 |
|
60 |
return ans
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
def cached(func):
|
63 |
def wrapper(*args, **kwargs):
|
64 |
SEP = "$|$"
|
|
|
83 |
|
84 |
return wrapper
|
85 |
|
|
|
86 |
@cached
|
87 |
def create_embedding(text: str):
|
88 |
embed_text = sentencetransformer_model.encode(text)
|
89 |
|
90 |
return embed_text.tolist()
|
91 |
|
|
|
|
|
|
|
|
|
92 |
def query_from_pinecone(query, top_k=3):
|
93 |
embedding = create_embedding(query)
|
94 |
if not embedding:
|
95 |
return None
|
96 |
|
97 |
+
return pinecone_client.Index(PINECONE_INDEX_NAME).query(vector=embedding, top_k=top_k, include_metadata=True).get("matches") # gets the metadata (text)
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
100 |
results_from_pinecone = query_from_pinecone(query, top_k=top_k)
|
|
|
141 |
|
142 |
return final_results
|
143 |
|
|
|
144 |
def semantic_search(prompt):
|
145 |
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
|
146 |
if not final_results:
|