Spaces:
Sleeping
Sleeping
Update semantic search and output format
Browse files
app.py
CHANGED
@@ -72,9 +72,9 @@ def get_results_from_pinecone(query, top_k=3, re_rank=True, verbose=True):
|
|
72 |
return final_results
|
73 |
|
74 |
def semantic_search(prompt):
|
75 |
-
final_results = get_results_from_pinecone(prompt, top_k=
|
76 |
|
77 |
-
return '
|
78 |
|
79 |
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
80 |
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
@@ -129,7 +129,7 @@ stop_terms=["</s>", "#End"]
|
|
129 |
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
|
130 |
|
131 |
category_terms=["</s>", "\n"]
|
132 |
-
category_eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in
|
133 |
|
134 |
|
135 |
class EvalStopCriterion(StoppingCriteria):
|
@@ -184,7 +184,7 @@ def text_to_text_generation(prompt):
|
|
184 |
print(f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:')
|
185 |
prompt = f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:'
|
186 |
else:
|
187 |
-
prompt = f'[INST] {prompt}
|
188 |
|
189 |
# Generate output
|
190 |
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
|
|
|
72 |
return final_results
|
73 |
|
74 |
def semantic_search(prompt):
|
75 |
+
final_results = get_results_from_pinecone(prompt, top_k=9, re_rank=True, verbose=True)
|
76 |
|
77 |
+
return '\n\n'.join(res['metadata']['text'].strip() for res in final_results[:3])
|
78 |
|
79 |
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
80 |
sentencetransformer_model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
|
|
|
129 |
eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in stop_terms]
|
130 |
|
131 |
category_terms=["</s>", "\n"]
|
132 |
+
category_eos_token_ids_custom = [torch.tensor(tokenizer.encode(term, add_special_tokens=False)).to("cuda") for term in category_terms]
|
133 |
|
134 |
|
135 |
class EvalStopCriterion(StoppingCriteria):
|
|
|
184 |
print(f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:')
|
185 |
prompt = f'[INST] You are an assistant who summarizes results retrieved from a book about Kubernetes. This summary should answer the question. If the answer is not in the retrieved results, use your general knowledge. [/INST] Question: {prompt}\nRetrieved results:\n{retrieved_results}\nResponse:'
|
186 |
else:
|
187 |
+
prompt = f'[INST] {prompt} [/INST]'
|
188 |
|
189 |
# Generate output
|
190 |
model_input = tokenizer(prompt, return_tensors="pt").to("cuda")
|