import sys import toml from omegaconf import OmegaConf import os from transformers import pipeline import numpy as np import tempfile import openai from pinecone.grpc import PineconeGRPC as Pinecone from pinecone import ServerlessSpec import streamlit as st from PIL import Image from gtts import gTTS from io import BytesIO from together import Together import time # For delay during index readiness check # Pinecone and OpenAI setup pinecone_api_key = os.getenv("PINECONE_API_KEY") together_api_key = os.getenv("Together_ai_API") openai.api_key = os.getenv("OpenAI_API") # Initialize Pinecone client pc = Pinecone(api_key=pinecone_api_key) # Create or retrieve Pinecone index index_name = "farming-assistant" dimension = 1536 # Adjust dimension to match Together AI embeddings if available if not pc.has_index(index_name): pc.create_index( name=index_name, dimension=dimension, metric="cosine", spec=ServerlessSpec( cloud='aws', region='us-east-1' ) ) # Wait for the index to be ready while not pc.describe_index(index_name).status['ready']: time.sleep(1) index = pc.Index(index_name) # Corrected method to connect to the index master_prompt = """ As a Natural Farming Fertilizers Assistant, you will assist the user with any farming-related question, always willing to answer any question and provide useful organic farming advice in the following format. ... [Words of encouragement] """ denial_response = "Database scraping is not permitted. Please abide by the terms of membership, and reach out with any collaboration requests via email" # Initialize Together AI client client = Together(api_key=together_api_key) # Updated Together client initialization def generate_response(question): # Generate a response using Together AI response = client.chat.completions.create( model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo", # Example model name messages=[ {"role": "system", "content": master_prompt}, {"role": "user", "content": question} ], ) # Extract and return the generated response content return response.choices[0].message.content def upsert_vectors(vectors): # Upsert vectors into Pinecone index index.upsert( vectors=vectors, namespace="farming-assistant" ) def launch_bot(): if 'cfg' not in st.session_state: questions = list(eval(os.environ['examples'])) cfg = OmegaConf.create({ 'api_key': str(os.environ['api_key']), 'title': os.environ['title'], 'description': os.environ['description'], 'examples': questions, 'source_data_desc': os.environ['source_data_desc'] }) st.session_state.cfg = cfg cfg = st.session_state.cfg st.set_page_config(page_title=cfg.title, layout="wide") # Left side content with st.sidebar: image = Image.open('Vectara-logo.png') st.markdown(f"## Welcome to {cfg.title}\n\n" f"This demo uses an AI organic farming expert and carefully curated library system to achieve greater accuracy in agronomics and agricultural methodology. Created by Copyleft Cultivars, a nonprofit, we hope you enjoy this beta-test early access version.\n\n") st.markdown("---") st.markdown( "## Democratizing access to farming knowledge.\n" "This app was built with the support of our Patreon subscribers. Thank you! [Click here to join our patreon or upgrade your membership.](https://www.patreon.com/CopyleftCultivarsNonprofit). \n" "Use of this app indicates agreement to our terms of membership, available on Copyleftcultivars.com as well as an agreement not to attempt to access our databases in any way. \n" ) st.markdown("---") st.image(image, width=250) st.markdown(f"