Corey Morris
Modified the selection of models and evaluations so that most do not show up by default. for a better user experience with 700+ models
0a33874
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
from result_data_processor import ResultDataProcessor | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def plot_top_n(df, target_column, n=10): | |
top_n = df.nlargest(n, target_column) | |
# Initialize the bar plot | |
fig, ax1 = plt.subplots(figsize=(10, 5)) | |
# Set width for each bar and their positions | |
width = 0.28 | |
ind = np.arange(len(top_n)) | |
# Plot target_column and MMLU_average on the primary y-axis with adjusted positions | |
ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column) | |
ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average') | |
# Set the primary y-axis labels and title | |
ax1.set_title(f'Top {n} performing models on {target_column}') | |
ax1.set_xlabel('Model') | |
ax1.set_ylabel('Score') | |
# Create a secondary y-axis for Parameters | |
ax2 = ax1.twinx() | |
# Plot Parameters as bars on the secondary y-axis with adjusted position | |
ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters') | |
# Set the secondary y-axis labels | |
ax2.set_ylabel('Parameters', color='red') | |
ax2.tick_params(axis='y', labelcolor='red') | |
# Set the x-ticks and their labels | |
ax1.set_xticks(ind) | |
ax1.set_xticklabels(top_n.index, rotation=45, ha="right") | |
# Adjust the legend | |
fig.tight_layout() | |
fig.legend(loc='center left', bbox_to_anchor=(1, 0.5)) | |
# Show the plot | |
st.pyplot(fig) | |
data_provider = ResultDataProcessor() | |
# st.title('Model Evaluation Results including MMLU by task') | |
st.title('MMLU-by-Task Evaluation Results for 700+ Open Source Models') | |
st.markdown("""***Last updated August 7th***""") | |
st.markdown(""" | |
Hugging Face has run evaluations on over 500 open source models and provides results on a | |
[publicly available leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and [dataset](https://huggingface.co/datasets/open-llm-leaderboard/results). | |
The leaderboard currently displays the overall result for MMLU. This page shows individual accuracy scores for all 57 tasks of the MMLU evaluation. | |
[Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b) | |
""") | |
filters = st.checkbox('Select Models and Evaluations') | |
# Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked | |
selected_columns = ['Parameters', 'MMLU_average'] if filters else data_provider.data.columns.tolist() | |
# Initialize selected models as empty if filters are checked | |
selected_models = [] if filters else data_provider.data.index.tolist() | |
if filters: | |
# Create multi-select for columns with default selection | |
selected_columns = st.multiselect( | |
'Select Columns', | |
data_provider.data.columns.tolist(), | |
default=selected_columns | |
) | |
# Create multi-select for models without default selection | |
selected_models = st.multiselect( | |
'Select Models', | |
data_provider.data.index.tolist() | |
) | |
# Get the filtered data | |
filtered_data = data_provider.get_data(selected_models) | |
# sort the table by the MMLU_average column | |
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) | |
# Search box | |
search_query = st.text_input("Filter by Model Name:", "") | |
# Filter the DataFrame based on the search query, including the index | |
if search_query: | |
filtered_data = filtered_data[ | |
filtered_data.apply( | |
lambda row: row.astype(str).str.contains(search_query, case=False).any() or search_query.lower() in row.name.lower(), | |
axis=1 | |
) | |
] | |
# Search box for columns | |
column_search_query = st.text_input("Filter by Column/Task Name:", "") | |
# Get the columns that contain the search query | |
matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()] | |
# Display the DataFrame with only the matching columns | |
st.dataframe(filtered_data[matching_columns]) | |
# CSV download | |
filtered_data.index.name = "Model Name" | |
csv = filtered_data.to_csv(index=True) | |
st.download_button( | |
label="Download data as CSV", | |
data=csv, | |
file_name="model_evaluation_results.csv", | |
mime="text/csv", | |
) | |
def create_plot(df, x_values, y_values, models=None, title=None): | |
if models is not None: | |
df = df[df.index.isin(models)] | |
# remove rows with NaN values | |
df = df.dropna(subset=[x_values, y_values]) | |
plot_data = pd.DataFrame({ | |
'Model': df.index, | |
x_values: df[x_values], | |
y_values: df[y_values], | |
}) | |
plot_data['color'] = 'purple' | |
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols") | |
# If title is not provided, use x_values vs. y_values as the default title | |
if title is None: | |
title = x_values + " vs. " + y_values | |
layout_args = dict( | |
showlegend=False, | |
xaxis_title=x_values, | |
yaxis_title=y_values, | |
xaxis=dict(), | |
yaxis=dict(), | |
title=title | |
) | |
fig.update_layout(**layout_args) | |
# Add a dashed line at 0.25 for the y_values | |
x_min = df[x_values].min() | |
x_max = df[x_values].max() | |
y_min = df[y_values].min() | |
y_max = df[y_values].max() | |
if x_values.startswith('MMLU'): | |
fig.add_shape( | |
type='line', | |
x0=0.25, x1=0.25, | |
y0=y_min, y1=y_max, | |
line=dict( | |
color='red', | |
width=2, | |
dash='dash' | |
) | |
) | |
if y_values.startswith('MMLU'): | |
fig.add_shape( | |
type='line', | |
x0=x_min, x1=x_max, | |
y0=0.25, y1=0.25, | |
line=dict( | |
color='red', | |
width=2, | |
dash='dash' | |
) | |
) | |
return fig | |
# Custom scatter plots | |
st.header('Custom scatter plots') | |
st.write(""" | |
The scatter plot is useful to identify models that outperform or underperform on a particular task in relation to their size or overall performance. | |
Identifying these models is a first step to better understand what training strategies result in better performance on a particular task. | |
""") | |
st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***") | |
# add a line separating the writing | |
st.markdown("***") | |
st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.") | |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) | |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3) | |
if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes | |
fig = create_plot(filtered_data, selected_x_column, selected_y_column) | |
st.plotly_chart(fig) | |
else: | |
st.write("Please select different columns for the x and y axes.") | |
# end of custom scatter plots | |
st.markdown("## Notable findings and plots") | |
st.markdown('### Abstract Algebra Performance') | |
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.") | |
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10) | |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra') | |
st.plotly_chart(fig) | |
# Moral scenarios plots | |
st.markdown("### Moral Scenarios Performance") | |
st.write(""" | |
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. | |
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help | |
identify capabilities that are important for moral reasoning. | |
""") | |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios") | |
st.plotly_chart(fig) | |
st.write() | |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***") | |
st.markdown(""" | |
# References | |
1. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | |
2. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628) | |
3. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457) | |
4. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830) | |
5. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300) | |
6. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958) | |
""") | |