import pandas as pd | |
import os | |
import fnmatch | |
import json | |
import re | |
import numpy as np | |
import requests | |
class DetailsDataProcessor: | |
# Download | |
#url example https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/64bits/LexPodLM-13B/details_harness%7ChendrycksTest-moral_scenarios%7C5_2023-07-25T13%3A41%3A51.227672.json | |
def __init__(self, directory='results', pattern='results*.json'): | |
self.directory = directory | |
self.pattern = pattern | |
# self.data = self.process_data() | |
# self.ranked_data = self.rank_data() | |
# download a file from a single url and save it to a local directory | |
def download_file(url, filename): | |
r = requests.get(url, allow_redirects=True) | |
open(filename, 'wb').write(r.content) | |
def single_file_pipeline(url, filename): | |
DetailsDataProcessor.download_file(url, filename) | |
# read file | |
with open(filename) as f: | |
data = json.load(f) | |
# convert to dataframe | |
df = pd.DataFrame(data) | |
return df | |
def generate_url(file_path): | |
base_url = 'https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/' | |
organization = '64bits' | |
model = 'LexPodLM-13B' | |
filename = '_2023-07-25T13%3A41%3A51.227672.json' | |
# extract organization, model, and filename from file_path instead of hardcoding | |
# filename = file_path.split('/')[-1] | |
other_chunk = 'details_harness%7ChendrycksTest-moral_scenarios%7C5' | |
constructed_url = base_url + organization + '/' + model + '/' + other_chunk + filename | |
return constructed_url | |
# @staticmethod | |
# def _find_files(directory, pattern): | |
# for root, dirs, files in os.walk(directory): | |
# for basename in files: | |
# if fnmatch.fnmatch(basename, pattern): | |
# filename = os.path.join(root, basename) | |
# yield filename | |
# def _read_and_transform_data(self, filename): | |
# with open(filename) as f: | |
# data = json.load(f) | |
# df = pd.DataFrame(data['results']).T | |
# return df | |
# def _cleanup_dataframe(self, df, model_name): | |
# df = df.rename(columns={'acc': model_name}) | |
# df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True) | |
# .str.replace('harness\|', '', regex=True) | |
# .str.replace('\|5', '', regex=True)) | |
# return df[[model_name]] | |
# def _extract_mc1(self, df, model_name): | |
# df = df.rename(columns={'mc1': model_name}) | |
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc1 | |
# df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True)) | |
# # just return the harness|truthfulqa:mc1 row | |
# df = df.loc[['harness|truthfulqa:mc1']] | |
# return df[[model_name]] | |
# def _extract_mc2(self, df, model_name): | |
# # rename row harness|truthfulqa:mc|0 to truthfulqa:mc2 | |
# df = df.rename(columns={'mc2': model_name}) | |
# df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True)) | |
# df = df.loc[['harness|truthfulqa:mc2']] | |
# return df[[model_name]] | |
# # remove extreme outliers from column harness|truthfulqa:mc1 | |
# def _remove_mc1_outliers(self, df): | |
# mc1 = df['harness|truthfulqa:mc1'] | |
# # Identify the outliers | |
# # outliers_condition = mc1 > mc1.quantile(.95) | |
# outliers_condition = mc1 == 1.0 | |
# # Replace the outliers with NaN | |
# df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan | |
# return df | |
# @staticmethod | |
# def _extract_parameters(model_name): | |
# """ | |
# Function to extract parameters from model name. | |
# It handles names with 'b/B' for billions and 'm/M' for millions. | |
# """ | |
# # pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions) | |
# pattern = re.compile(r'(\d+\.?\d*)([bBmM])') | |
# match = pattern.search(model_name) | |
# if match: | |
# num, magnitude = match.groups() | |
# num = float(num) | |
# # convert millions to billions | |
# if magnitude.lower() == 'm': | |
# num /= 1000 | |
# return num | |
# # return NaN if no match | |
# return np.nan | |
# def process_data(self): | |
# dataframes = [] | |
# organization_names = [] | |
# for filename in self._find_files(self.directory, self.pattern): | |
# raw_data = self._read_and_transform_data(filename) | |
# split_path = filename.split('/') | |
# model_name = split_path[2] | |
# organization_name = split_path[1] | |
# cleaned_data = self._cleanup_dataframe(raw_data, model_name) | |
# mc1 = self._extract_mc1(raw_data, model_name) | |
# mc2 = self._extract_mc2(raw_data, model_name) | |
# cleaned_data = pd.concat([cleaned_data, mc1]) | |
# cleaned_data = pd.concat([cleaned_data, mc2]) | |
# organization_names.append(organization_name) | |
# dataframes.append(cleaned_data) | |
# data = pd.concat(dataframes, axis=1).transpose() | |
# # Add organization column | |
# data['organization'] = organization_names | |
# # Add Model Name and rearrange columns | |
# data['Model Name'] = data.index | |
# cols = data.columns.tolist() | |
# cols = cols[-1:] + cols[:-1] | |
# data = data[cols] | |
# # Remove the 'Model Name' column | |
# data = data.drop(columns=['Model Name']) | |
# # Add average column | |
# data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1) | |
# # Reorder columns to move 'MMLU_average' to the third position | |
# cols = data.columns.tolist() | |
# cols = cols[:2] + cols[-1:] + cols[2:-1] | |
# data = data[cols] | |
# # Drop specific columns | |
# data = data.drop(columns=['all', 'truthfulqa:mc|0']) | |
# # Add parameter count column using extract_parameters function | |
# data['Parameters'] = data.index.to_series().apply(self._extract_parameters) | |
# # move the parameters column to the front of the dataframe | |
# cols = data.columns.tolist() | |
# cols = cols[-1:] + cols[:-1] | |
# data = data[cols] | |
# # remove extreme outliers from column harness|truthfulqa:mc1 | |
# data = self._remove_mc1_outliers(data) | |
# return data | |
# def rank_data(self): | |
# # add rank for each column to the dataframe | |
# # copy the data dataframe to avoid modifying the original dataframe | |
# rank_data = self.data.copy() | |
# for col in list(rank_data.columns): | |
# rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min') | |
# return rank_data | |
# def get_data(self, selected_models): | |
# return self.data[self.data.index.isin(selected_models)] | |