Corey Morris
removing models that are known to have training data contaminated with evaluations
a5840fb
import pandas as pd | |
import os | |
import fnmatch | |
import json | |
import re | |
import numpy as np | |
class ResultDataProcessor: | |
def __init__(self, directory='results', pattern='results*.json'): | |
self.directory = directory | |
self.pattern = pattern | |
self.data = self.process_data() | |
self.ranked_data = self.rank_data() | |
def _find_files(directory, pattern): | |
for root, dirs, files in os.walk(directory): | |
for basename in files: | |
if fnmatch.fnmatch(basename, pattern): | |
filename = os.path.join(root, basename) | |
yield filename | |
def _read_and_transform_data(self, filename): | |
with open(filename) as f: | |
data = json.load(f) | |
df = pd.DataFrame(data['results']).T | |
return df | |
def _cleanup_dataframe(self, df, model_name): | |
df = df.rename(columns={'acc': model_name}) | |
df.index = (df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True) | |
.str.replace('harness\|', '', regex=True) | |
.str.replace('\|5', '', regex=True)) | |
return df[[model_name]] | |
def _extract_mc1(self, df, model_name): | |
df = df.rename(columns={'mc1': model_name}) | |
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc1 | |
df.index = (df.index.str.replace('mc\|0', 'mc1', regex=True)) | |
# just return the harness|truthfulqa:mc1 row | |
df = df.loc[['harness|truthfulqa:mc1']] | |
return df[[model_name]] | |
def _extract_mc2(self, df, model_name): | |
# rename row harness|truthfulqa:mc|0 to truthfulqa:mc2 | |
df = df.rename(columns={'mc2': model_name}) | |
df.index = (df.index.str.replace('mc\|0', 'mc2', regex=True)) | |
df = df.loc[['harness|truthfulqa:mc2']] | |
return df[[model_name]] | |
# remove extreme outliers from column harness|truthfulqa:mc1 | |
def _remove_mc1_outliers(self, df): | |
mc1 = df['harness|truthfulqa:mc1'] | |
# Identify the outliers | |
# outliers_condition = mc1 > mc1.quantile(.95) | |
outliers_condition = mc1 == 1.0 | |
# Replace the outliers with NaN | |
df.loc[outliers_condition, 'harness|truthfulqa:mc1'] = np.nan | |
return df | |
def _extract_parameters(model_name): | |
""" | |
Function to extract parameters from model name. | |
It handles names with 'b/B' for billions and 'm/M' for millions. | |
""" | |
# pattern to match a number followed by 'b' (representing billions) or 'm' (representing millions) | |
pattern = re.compile(r'(\d+\.?\d*)([bBmM])') | |
match = pattern.search(model_name) | |
if match: | |
num, magnitude = match.groups() | |
num = float(num) | |
# convert millions to billions | |
if magnitude.lower() == 'm': | |
num /= 1000 | |
return num | |
# return NaN if no match | |
return np.nan | |
def process_data(self): | |
dataframes = [] | |
organization_names = [] | |
for filename in self._find_files(self.directory, self.pattern): | |
raw_data = self._read_and_transform_data(filename) | |
split_path = filename.split('/') | |
model_name = split_path[2] | |
organization_name = split_path[1] | |
cleaned_data = self._cleanup_dataframe(raw_data, model_name) | |
mc1 = self._extract_mc1(raw_data, model_name) | |
mc2 = self._extract_mc2(raw_data, model_name) | |
cleaned_data = pd.concat([cleaned_data, mc1]) | |
cleaned_data = pd.concat([cleaned_data, mc2]) | |
organization_names.append(organization_name) | |
dataframes.append(cleaned_data) | |
data = pd.concat(dataframes, axis=1).transpose() | |
# Add organization column | |
data['organization'] = organization_names | |
# Add Model Name and rearrange columns | |
data['Model Name'] = data.index | |
cols = data.columns.tolist() | |
cols = cols[-1:] + cols[:-1] | |
data = data[cols] | |
# Remove the 'Model Name' column | |
data = data.drop(columns=['Model Name']) | |
# Add average column | |
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1) | |
# Reorder columns to move 'MMLU_average' to the third position | |
cols = data.columns.tolist() | |
cols = cols[:2] + cols[-1:] + cols[2:-1] | |
data = data[cols] | |
# Drop specific columns | |
data = data.drop(columns=['all', 'truthfulqa:mc|0']) | |
# Add parameter count column using extract_parameters function | |
data['Parameters'] = data.index.to_series().apply(self._extract_parameters) | |
# move the parameters column to the front of the dataframe | |
cols = data.columns.tolist() | |
cols = cols[-1:] + cols[:-1] | |
data = data[cols] | |
# remove extreme outliers from column harness|truthfulqa:mc1 | |
data = self._remove_mc1_outliers(data) | |
data = self.manual_removal_of_models(data) | |
return data | |
def manual_removal_of_models(self, df): | |
# remove models verified to be trained on evaluation data | |
# load the list of models | |
with open('contaminated_models.txt') as f: | |
contaminated_models = f.read().splitlines() | |
# remove the models from the dataframe | |
df = df[~df.index.isin(contaminated_models)] | |
return df | |
def rank_data(self): | |
# add rank for each column to the dataframe | |
# copy the data dataframe to avoid modifying the original dataframe | |
rank_data = self.data.copy() | |
for col in list(rank_data.columns): | |
rank_data[col + "_rank"] = rank_data[col].rank(ascending=False, method='min') | |
return rank_data | |
def get_data(self, selected_models): | |
return self.data[self.data.index.isin(selected_models)] | |