Corey Morris
added MMLU overall average column. added a few charts comparing more moral reasoning and comparing MMLU overall to other data
c671de9
import streamlit as st | |
import pandas as pd | |
import os | |
import fnmatch | |
import json | |
import plotly.express as px | |
class MultiURLData: | |
def __init__(self): | |
self.data = self.process_data() | |
def process_data(self): | |
dataframes = [] | |
def find_files(directory, pattern): | |
for root, dirs, files in os.walk(directory): | |
for basename in files: | |
if fnmatch.fnmatch(basename, pattern): | |
filename = os.path.join(root, basename) | |
yield filename | |
for filename in find_files('results', 'results*.json'): | |
model_name = filename.split('/')[2] | |
with open(filename) as f: | |
data = json.load(f) | |
df = pd.DataFrame(data['results']).T | |
# data cleanup | |
df = df.rename(columns={'acc': model_name}) | |
# Replace 'hendrycksTest-' with a more descriptive column name | |
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True) | |
df.index = df.index.str.replace('harness\|', '', regex=True) | |
# remove |5 from the index | |
df.index = df.index.str.replace('\|5', '', regex=True) | |
dataframes.append(df[[model_name]]) | |
data = pd.concat(dataframes, axis=1) | |
data = data.transpose() | |
data['Model Name'] = data.index | |
cols = data.columns.tolist() | |
cols = cols[-1:] + cols[:-1] | |
data = data[cols] | |
# create a new column that averages the results from each of the columns with a name that start with MMLU | |
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1) | |
# move the MMLU_average column to the the second column in the dataframe | |
cols = data.columns.tolist() | |
cols = cols[:1] + cols[-1:] + cols[1:-1] | |
data = data[cols] | |
data | |
return data | |
def get_data(self, selected_models): | |
filtered_data = self.data[self.data['Model Name'].isin(selected_models)] | |
return filtered_data | |
data_provider = MultiURLData() | |
st.title('Leaderboard') | |
# TODO actually use these checkboxes as filters | |
## Desired behavior | |
## model and column selection is hidden by default | |
## when the user clicks the checkbox, the model and column selection appears | |
filters = st.checkbox('Add filters') | |
# Create checkboxes for each column | |
selected_columns = st.multiselect( | |
'Select Columns', | |
data_provider.data.columns.tolist(), | |
default=data_provider.data.columns.tolist() | |
) | |
selected_models = st.multiselect( | |
'Select Models', | |
data_provider.data['Model Name'].tolist(), | |
default=data_provider.data['Model Name'].tolist() | |
) | |
# Get the filtered data and display it in a table | |
st.header('Sortable table') | |
filtered_data = data_provider.get_data(selected_models) | |
st.dataframe(filtered_data) | |
def create_plot(df, model_column, arc_column, moral_column, models=None): | |
# Filter the dataframe if specific models are provided | |
if models is not None: | |
df = df[df[model_column].isin(models)] | |
# Create a plot with new data | |
plot_data = pd.DataFrame({ | |
'Model': list(df[model_column]), | |
arc_column: list(df[arc_column]), | |
moral_column: list(df[moral_column]), | |
}) | |
# Calculate color column | |
plot_data['color'] = 'purple' | |
# # TODO maybe change this | |
# plot_data.loc[plot_data[moral_column] < plot_data[arc_column], 'color'] = 'red' | |
# plot_data.loc[plot_data[moral_column] > plot_data[arc_column], 'color'] = 'blue' | |
# Create the scatter plot with trendline | |
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols") #other option ols | |
fig.update_layout(showlegend=False, # hide legend | |
xaxis_title=arc_column, | |
yaxis_title=moral_column, | |
xaxis = dict(), | |
yaxis = dict()) | |
return fig | |
# models_to_plot = ['Model1', 'Model2', 'Model3'] | |
# fig = create_plot(filtered_data, 'Model Name', 'arc:challenge|25', 'moral_scenarios|5', models=models_to_plot) | |
st.header('Overall benchmark comparison') | |
fig = create_plot(filtered_data, 'Model Name', 'arc:challenge|25', 'hellaswag|10') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'Model Name', 'arc:challenge|25', 'MMLU_average') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'Model Name', 'hellaswag|10', 'MMLU_average') | |
st.plotly_chart(fig) | |
# Add heading to page to say Moral Scenarios | |
st.header('Moral Scenarios') | |
fig = create_plot(filtered_data, 'Model Name', 'arc:challenge|25', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'Model Name', 'MMLU_moral_disputes', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
fig = create_plot(filtered_data, 'Model Name', 'MMLU_average', 'MMLU_moral_scenarios') | |
st.plotly_chart(fig) | |
# create a histogram of moral scenarios | |
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) | |
# create a histogram of moral disputes | |
fig = px.histogram(filtered_data, x="MMLU_moral_disputes", marginal="rug", hover_data=filtered_data.columns) | |
st.plotly_chart(fig) |