Corey Morris
commited on
Commit
·
843a5ef
1
Parent(s):
03ade34
Refactoring. Moved ResultDataProcessor class to a separate file to make it easier to use with experimentation in a jupyter notebook
Browse files- app.py +4 -72
- result_data_processor.py +68 -0
app.py
CHANGED
@@ -1,73 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import os
|
4 |
-
import fnmatch
|
5 |
-
import json
|
6 |
import plotly.express as px
|
7 |
-
|
8 |
-
class ResultDataProcessor:
|
9 |
-
def __init__(self):
|
10 |
-
self.data = self.process_data()
|
11 |
-
|
12 |
-
def process_data(self):
|
13 |
-
dataframes = []
|
14 |
-
|
15 |
-
def find_files(directory, pattern):
|
16 |
-
for root, dirs, files in os.walk(directory):
|
17 |
-
for basename in files:
|
18 |
-
if fnmatch.fnmatch(basename, pattern):
|
19 |
-
filename = os.path.join(root, basename)
|
20 |
-
yield filename
|
21 |
-
|
22 |
-
for filename in find_files('results', 'results*.json'):
|
23 |
-
model_name = filename.split('/')[2]
|
24 |
-
with open(filename) as f:
|
25 |
-
data = json.load(f)
|
26 |
-
df = pd.DataFrame(data['results']).T
|
27 |
-
|
28 |
-
|
29 |
-
# data cleanup
|
30 |
-
df = df.rename(columns={'acc': model_name})
|
31 |
-
# Replace 'hendrycksTest-' with a more descriptive column name
|
32 |
-
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
33 |
-
df.index = df.index.str.replace('harness\|', '', regex=True)
|
34 |
-
# remove |5 from the index
|
35 |
-
df.index = df.index.str.replace('\|5', '', regex=True)
|
36 |
-
|
37 |
-
|
38 |
-
dataframes.append(df[[model_name]])
|
39 |
-
|
40 |
-
data = pd.concat(dataframes, axis=1)
|
41 |
-
|
42 |
-
data = data.transpose()
|
43 |
-
data['Model Name'] = data.index
|
44 |
-
cols = data.columns.tolist()
|
45 |
-
cols = cols[-1:] + cols[:-1]
|
46 |
-
data = data[cols]
|
47 |
-
|
48 |
-
# remove the Model Name column
|
49 |
-
data = data.drop(['Model Name'], axis=1)
|
50 |
-
|
51 |
-
# remove the all column
|
52 |
-
data = data.drop(['all'], axis=1)
|
53 |
-
|
54 |
-
# remove the truthfulqa:mc|0 column
|
55 |
-
data = data.drop(['truthfulqa:mc|0'], axis=1)
|
56 |
-
|
57 |
-
# create a new column that averages the results from each of the columns with a name that start with MMLU
|
58 |
-
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
59 |
-
|
60 |
-
# move the MMLU_average column to the third column in the dataframe
|
61 |
-
cols = data.columns.tolist()
|
62 |
-
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
63 |
-
data = data[cols]
|
64 |
-
|
65 |
-
return data
|
66 |
-
|
67 |
-
# filter data based on the index
|
68 |
-
def get_data(self, selected_models):
|
69 |
-
filtered_data = self.data[self.data.index.isin(selected_models)]
|
70 |
-
return filtered_data
|
71 |
|
72 |
data_provider = ResultDataProcessor()
|
73 |
|
@@ -131,10 +65,6 @@ def create_plot(df, arc_column, moral_column, models=None):
|
|
131 |
|
132 |
return fig
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
st.header('Overall benchmark comparison')
|
137 |
-
|
138 |
st.header('Custom scatter plots')
|
139 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
140 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)
|
@@ -145,6 +75,8 @@ if selected_x_column != selected_y_column: # Avoid creating a plot with the s
|
|
145 |
else:
|
146 |
st.write("Please select different columns for the x and y axes.")
|
147 |
|
|
|
|
|
148 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
|
149 |
st.plotly_chart(fig)
|
150 |
|
@@ -159,7 +91,7 @@ top_50 = filtered_data.nlargest(50, 'MMLU_average')
|
|
159 |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
|
160 |
st.plotly_chart(fig)
|
161 |
|
162 |
-
st.header('Moral
|
163 |
|
164 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
|
165 |
st.plotly_chart(fig)
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
|
|
3 |
import plotly.express as px
|
4 |
+
from result_data_processor import ResultDataProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
data_provider = ResultDataProcessor()
|
7 |
|
|
|
65 |
|
66 |
return fig
|
67 |
|
|
|
|
|
|
|
|
|
68 |
st.header('Custom scatter plots')
|
69 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
70 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=1)
|
|
|
75 |
else:
|
76 |
st.write("Please select different columns for the x and y axes.")
|
77 |
|
78 |
+
st.header('Overall evaluation comparisons')
|
79 |
+
|
80 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'hellaswag|10')
|
81 |
st.plotly_chart(fig)
|
82 |
|
|
|
91 |
fig = create_plot(top_50, 'arc:challenge|25', 'MMLU_average')
|
92 |
st.plotly_chart(fig)
|
93 |
|
94 |
+
st.header('Moral Reasoning')
|
95 |
|
96 |
fig = create_plot(filtered_data, 'arc:challenge|25', 'MMLU_moral_scenarios')
|
97 |
st.plotly_chart(fig)
|
result_data_processor.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
import fnmatch
|
4 |
+
import json
|
5 |
+
|
6 |
+
class ResultDataProcessor:
|
7 |
+
def __init__(self):
|
8 |
+
self.data = self.process_data()
|
9 |
+
|
10 |
+
def process_data(self):
|
11 |
+
dataframes = []
|
12 |
+
|
13 |
+
def find_files(directory, pattern):
|
14 |
+
for root, dirs, files in os.walk(directory):
|
15 |
+
for basename in files:
|
16 |
+
if fnmatch.fnmatch(basename, pattern):
|
17 |
+
filename = os.path.join(root, basename)
|
18 |
+
yield filename
|
19 |
+
|
20 |
+
for filename in find_files('results', 'results*.json'):
|
21 |
+
model_name = filename.split('/')[2]
|
22 |
+
with open(filename) as f:
|
23 |
+
data = json.load(f)
|
24 |
+
df = pd.DataFrame(data['results']).T
|
25 |
+
|
26 |
+
|
27 |
+
# data cleanup
|
28 |
+
df = df.rename(columns={'acc': model_name})
|
29 |
+
# Replace 'hendrycksTest-' with a more descriptive column name
|
30 |
+
df.index = df.index.str.replace('hendrycksTest-', 'MMLU_', regex=True)
|
31 |
+
df.index = df.index.str.replace('harness\|', '', regex=True)
|
32 |
+
# remove |5 from the index
|
33 |
+
df.index = df.index.str.replace('\|5', '', regex=True)
|
34 |
+
|
35 |
+
|
36 |
+
dataframes.append(df[[model_name]])
|
37 |
+
|
38 |
+
data = pd.concat(dataframes, axis=1)
|
39 |
+
|
40 |
+
data = data.transpose()
|
41 |
+
data['Model Name'] = data.index
|
42 |
+
cols = data.columns.tolist()
|
43 |
+
cols = cols[-1:] + cols[:-1]
|
44 |
+
data = data[cols]
|
45 |
+
|
46 |
+
# remove the Model Name column
|
47 |
+
data = data.drop(['Model Name'], axis=1)
|
48 |
+
|
49 |
+
# remove the all column
|
50 |
+
data = data.drop(['all'], axis=1)
|
51 |
+
|
52 |
+
# remove the truthfulqa:mc|0 column
|
53 |
+
data = data.drop(['truthfulqa:mc|0'], axis=1)
|
54 |
+
|
55 |
+
# create a new column that averages the results from each of the columns with a name that start with MMLU
|
56 |
+
data['MMLU_average'] = data.filter(regex='MMLU').mean(axis=1)
|
57 |
+
|
58 |
+
# move the MMLU_average column to the third column in the dataframe
|
59 |
+
cols = data.columns.tolist()
|
60 |
+
cols = cols[:2] + cols[-1:] + cols[2:-1]
|
61 |
+
data = data[cols]
|
62 |
+
|
63 |
+
return data
|
64 |
+
|
65 |
+
# filter data based on the index
|
66 |
+
def get_data(self, selected_models):
|
67 |
+
filtered_data = self.data[self.data.index.isin(selected_models)]
|
68 |
+
return filtered_data
|