Corey Morris commited on
Commit
a125eb8
1 Parent(s): 627e0f9

removed charts with hardcoded tasks. removed hardcoding of model for other charts

Browse files
Files changed (1) hide show
  1. app.py +0 -11
app.py CHANGED
@@ -265,13 +265,6 @@ selected_model_name = st.selectbox("Select a Model:", filtered_data.index.tolist
265
  metrics_to_compare = ['MMLU_abstract_algebra', 'MMLU_astronomy', 'MMLU_business_ethics', 'MMLU_average', 'MMLU_moral_scenarios']
266
  closest_models = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs().nsmallest(5).index.tolist()
267
 
268
- fig_radar = create_radar_chart_unfilled(filtered_data, closest_models, metrics_to_compare)
269
- fig_line = create_line_chart(filtered_data, closest_models, metrics_to_compare)
270
-
271
- st.plotly_chart(fig_radar)
272
- st.plotly_chart(fig_line)
273
-
274
-
275
  st.dataframe(filtered_data.loc[closest_models, metrics_to_compare])
276
 
277
  # Function to find the top differences and return them as a DataFrame
@@ -287,10 +280,6 @@ def find_top_differences_table(df, target_model, closest_models, num_differences
287
  })
288
  return top_differences_table, top_differences_table['Task'].tolist()
289
 
290
- # Your existing code for selecting the target model and finding the closest models
291
- selected_model_name = "firefly-ziya-13b"
292
- # closest_models = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs().nsmallest(5).index.tolist()
293
-
294
  # Find the top 10 tasks with the largest differences and convert to a DataFrame
295
  top_differences_table, top_differences_tasks = find_top_differences_table(filtered_data, selected_model_name, closest_models)
296
 
 
265
  metrics_to_compare = ['MMLU_abstract_algebra', 'MMLU_astronomy', 'MMLU_business_ethics', 'MMLU_average', 'MMLU_moral_scenarios']
266
  closest_models = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs().nsmallest(5).index.tolist()
267
 
 
 
 
 
 
 
 
268
  st.dataframe(filtered_data.loc[closest_models, metrics_to_compare])
269
 
270
  # Function to find the top differences and return them as a DataFrame
 
280
  })
281
  return top_differences_table, top_differences_table['Task'].tolist()
282
 
 
 
 
 
283
  # Find the top 10 tasks with the largest differences and convert to a DataFrame
284
  top_differences_table, top_differences_tasks = find_top_differences_table(filtered_data, selected_model_name, closest_models)
285