Corey Morris commited on
Commit
cb21769
1 Parent(s): a9f9804

Added reasoning for having scatter plots

Browse files
Files changed (1) hide show
  1. app.py +10 -1
app.py CHANGED
@@ -164,8 +164,15 @@ def create_plot(df, x_values, y_values, models=None, title=None):
164
 
165
  # Custom scatter plots
166
  st.header('Custom scatter plots')
167
- st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.")
 
 
 
168
  st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***")
 
 
 
 
169
  selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
170
  selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3)
171
 
@@ -197,6 +204,8 @@ fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Im
197
  st.plotly_chart(fig)
198
  st.write()
199
 
 
 
200
  fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
201
  st.plotly_chart(fig)
202
 
 
164
 
165
  # Custom scatter plots
166
  st.header('Custom scatter plots')
167
+ st.write("""
168
+ The scatter plot is useful to identify models that outperform or underperform on a particular task in relation to their size or overall performance.
169
+ Identifying these models is a first step to better understand what training strategies result in better performance on a particular task.
170
+ """)
171
  st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***")
172
+ # add a line separating the writing
173
+ st.markdown("***")
174
+ st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.")
175
+
176
  selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
177
  selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3)
178
 
 
204
  st.plotly_chart(fig)
205
  st.write()
206
 
207
+
208
+
209
  fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
210
  st.plotly_chart(fig)
211