Corey Morris
commited on
Commit
•
cb21769
1
Parent(s):
a9f9804
Added reasoning for having scatter plots
Browse files
app.py
CHANGED
@@ -164,8 +164,15 @@ def create_plot(df, x_values, y_values, models=None, title=None):
|
|
164 |
|
165 |
# Custom scatter plots
|
166 |
st.header('Custom scatter plots')
|
167 |
-
st.write("
|
|
|
|
|
|
|
168 |
st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***")
|
|
|
|
|
|
|
|
|
169 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
170 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3)
|
171 |
|
@@ -197,6 +204,8 @@ fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Im
|
|
197 |
st.plotly_chart(fig)
|
198 |
st.write()
|
199 |
|
|
|
|
|
200 |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
201 |
st.plotly_chart(fig)
|
202 |
|
|
|
164 |
|
165 |
# Custom scatter plots
|
166 |
st.header('Custom scatter plots')
|
167 |
+
st.write("""
|
168 |
+
The scatter plot is useful to identify models that outperform or underperform on a particular task in relation to their size or overall performance.
|
169 |
+
Identifying these models is a first step to better understand what training strategies result in better performance on a particular task.
|
170 |
+
""")
|
171 |
st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***")
|
172 |
+
# add a line separating the writing
|
173 |
+
st.markdown("***")
|
174 |
+
st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.")
|
175 |
+
|
176 |
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0)
|
177 |
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3)
|
178 |
|
|
|
204 |
st.plotly_chart(fig)
|
205 |
st.write()
|
206 |
|
207 |
+
|
208 |
+
|
209 |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
210 |
st.plotly_chart(fig)
|
211 |
|