Corey Morris
commited on
Commit
•
d97426f
1
Parent(s):
f9a0f38
Added statement and hypothesis about moral scenarios
Browse files
app.py
CHANGED
@@ -187,13 +187,15 @@ st.plotly_chart(fig)
|
|
187 |
|
188 |
# Moral scenarios plots
|
189 |
st.markdown("### Moral Scenarios Performance")
|
190 |
-
st.write("
|
|
|
|
|
|
|
|
|
191 |
|
192 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
193 |
st.plotly_chart(fig)
|
194 |
-
|
195 |
-
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
|
196 |
-
st.plotly_chart(fig)
|
197 |
|
198 |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
199 |
st.plotly_chart(fig)
|
|
|
187 |
|
188 |
# Moral scenarios plots
|
189 |
st.markdown("### Moral Scenarios Performance")
|
190 |
+
st.write("""
|
191 |
+
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
192 |
+
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
193 |
+
identify capabilities that are important for moral reasoning.
|
194 |
+
""")
|
195 |
|
196 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
197 |
st.plotly_chart(fig)
|
198 |
+
st.write()
|
|
|
|
|
199 |
|
200 |
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
201 |
st.plotly_chart(fig)
|