Corey Morris commited on
Commit
d97426f
1 Parent(s): f9a0f38

Added statement and hypothesis about moral scenarios

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -187,13 +187,15 @@ st.plotly_chart(fig)
187
 
188
  # Moral scenarios plots
189
  st.markdown("### Moral Scenarios Performance")
190
- st.write("While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. There are no models with less than 13 billion parameters with performance much better than random chance.")
 
 
 
 
191
 
192
  fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
193
  st.plotly_chart(fig)
194
-
195
- fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
196
- st.plotly_chart(fig)
197
 
198
  fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
199
  st.plotly_chart(fig)
 
187
 
188
  # Moral scenarios plots
189
  st.markdown("### Moral Scenarios Performance")
190
+ st.write("""
191
+ While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
192
+ There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
193
+ identify capabilities that are important for moral reasoning.
194
+ """)
195
 
196
  fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
197
  st.plotly_chart(fig)
198
+ st.write()
 
 
199
 
200
  fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
201
  st.plotly_chart(fig)