import pandas as pd import os import fnmatch import json import re import numpy as np import requests from urllib.parse import quote from datetime import datetime class DetailsDataProcessor: # Download #url example https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/64bits/LexPodLM-13B/details_harness%7ChendrycksTest-moral_scenarios%7C5_2023-07-25T13%3A41%3A51.227672.json def __init__(self, directory='results', pattern='results*.json'): self.directory = directory self.pattern = pattern # self.data = self.process_data() # self.ranked_data = self.rank_data() def _find_files(self, directory='results', pattern='results*.json'): matching_files = [] # List to hold matching filenames for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) matching_files.append(filename) # Append the matching filename to the list return matching_files # Return the list of matching filenames # download a file from a single url and save it to a local directory # @staticmethod # def download_file(url, file_path): # #TODO: I may not need to save the file. I can just read it in and convert to a dataframe # r = requests.get(url, allow_redirects=True) # open(file_path, 'wb').write(r.content) # # return dataframe # df = pd.DataFrame(r.content) # return df @staticmethod def download_file(url, save_file_path): # Get the current date and time timestamp = datetime.now() # Format the timestamp as a string, suitable for use in a filename filename_timestamp = timestamp.strftime("%Y-%m-%dT%H-%M-%S") # Construct the full save file path save_file_path = save_file_path + filename_timestamp + ".json" print(save_file_path) # Output will be something like "results_2023-08-20T12-34-56.txt" try: # Sending a GET request r = requests.get(url, allow_redirects=True) r.raise_for_status() # Raises an HTTPError if the HTTP request returned an unsuccessful status code # Writing the content to the specified file with open(save_file_path, 'wb') as file: file.write(r.content) print(f"Successfully downloaded file: {save_file_path}") except requests.ConnectionError as e: print(f"Failed to connect to the URL: {url}") raise e except requests.HTTPError as e: print(f"HTTP error occurred: {e}") raise e except FileNotFoundError as e: print(f"File not found at path: {save_file_path}") raise e except Exception as e: print(f"An unexpected error occurred: {e}") raise e return None @staticmethod def single_file_pipeline(url, filename): DetailsDataProcessor.download_file(url, filename) # read file with open(filename) as f: data = json.load(f) # convert to dataframe df = pd.DataFrame(data) return df @staticmethod def build_url(file_path): segments = file_path.split('/') bits = segments[1] model_name = segments[2] timestamp = segments[3].split('_')[1] url = f'https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/{bits}/{model_name}/details_harness%7ChendrycksTest-moral_scenarios%7C5_{quote(timestamp, safe="")}' print(url) return url def pipeline(self): dataframes = [] file_paths = self._find_files(self.directory, self.pattern) for file_path in file_paths: print(file_path) url = self.generate_url(file_path) file_path = file_path.split('/')[-1] df = self.single_file_pipeline(url, file_path) dataframes.append(df) return dataframes