import pandas as pd import os import fnmatch import json import re import numpy as np import requests class DetailsDataProcessor: # Download #url example https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/64bits/LexPodLM-13B/details_harness%7ChendrycksTest-moral_scenarios%7C5_2023-07-25T13%3A41%3A51.227672.json def __init__(self, directory='results', pattern='results*.json'): self.directory = directory self.pattern = pattern # self.data = self.process_data() # self.ranked_data = self.rank_data() def _find_files(self, directory='results', pattern='results*.json'): matching_files = [] # List to hold matching filenames for root, dirs, files in os.walk(directory): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) matching_files.append(filename) # Append the matching filename to the list return matching_files # Return the list of matching filenames # download a file from a single url and save it to a local directory @staticmethod def download_file(url, filename): r = requests.get(url, allow_redirects=True) open(filename, 'wb').write(r.content) @staticmethod def single_file_pipeline(url, filename): DetailsDataProcessor.download_file(url, filename) # read file with open(filename) as f: data = json.load(f) # convert to dataframe df = pd.DataFrame(data) return df @staticmethod def generate_url(file_path): base_url = 'https://huggingface.co/datasets/open-llm-leaderboard/details/resolve/main/' organization = '64bits' model = 'LexPodLM-13B' filename = '_2023-07-25T13%3A41%3A51.227672.json' # extract organization, model, and filename from file_path instead of hardcoding # filename = file_path.split('/')[-1] other_chunk = 'details_harness%7ChendrycksTest-moral_scenarios%7C5' constructed_url = base_url + organization + '/' + model + '/' + other_chunk + filename return constructed_url def pipeline(self): dataframes = [] file_paths = self._find_files(self.directory, self.pattern) for file_path in file_paths: print(file_path) url = self.generate_url(file_path) file_path = file_path.split('/')[-1] df = self.single_file_pipeline(url, file_path) dataframes.append(df) return dataframes