import streamlit as st import pandas as pd import plotly.express as px from result_data_processor import ResultDataProcessor import matplotlib.pyplot as plt import numpy as np import plotly.graph_objects as go st.set_page_config(layout="wide") def plot_top_n(df, target_column, n=10): top_n = df.nlargest(n, target_column) # Initialize the bar plot fig, ax1 = plt.subplots(figsize=(10, 5)) # Set width for each bar and their positions width = 0.28 ind = np.arange(len(top_n)) # Plot target_column and MMLU_average on the primary y-axis with adjusted positions ax1.bar(ind - width, top_n[target_column], width=width, color='blue', label=target_column) ax1.bar(ind, top_n['MMLU_average'], width=width, color='orange', label='MMLU_average') # Set the primary y-axis labels and title ax1.set_title(f'Top {n} performing models on {target_column}') ax1.set_xlabel('Model') ax1.set_ylabel('Score') # Create a secondary y-axis for Parameters ax2 = ax1.twinx() # Plot Parameters as bars on the secondary y-axis with adjusted position ax2.bar(ind + width, top_n['Parameters'], width=width, color='red', label='Parameters') # Set the secondary y-axis labels ax2.set_ylabel('Parameters', color='red') ax2.tick_params(axis='y', labelcolor='red') # Set the x-ticks and their labels ax1.set_xticks(ind) ax1.set_xticklabels(top_n.index, rotation=45, ha="right") # Adjust the legend fig.tight_layout() fig.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # Show the plot st.pyplot(fig) # Function to create an unfilled radar chart def create_radar_chart_unfilled(df, model_names, metrics): fig = go.Figure() min_value = df.loc[model_names, metrics].min().min() max_value = df.loc[model_names, metrics].max().max() for model_name in model_names: values_model = df.loc[model_name, metrics] fig.add_trace(go.Scatterpolar( r=values_model, theta=metrics, name=model_name )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[min_value, max_value] )), showlegend=True ) return fig # Function to create a line chart def create_line_chart(df, model_names, metrics): line_data = [] for model_name in model_names: values_model = df.loc[model_name, metrics] for metric, value in zip(metrics, values_model): line_data.append({'Model': model_name, 'Metric': metric, 'Value': value}) line_df = pd.DataFrame(line_data) fig = px.line(line_df, x='Metric', y='Value', color='Model', title='Comparison of Models', line_dash_sequence=['solid']) fig.update_layout(showlegend=True) return fig data_provider = ResultDataProcessor() # st.title('Model Evaluation Results including MMLU by task') st.title('MMLU-by-Task Evaluation Results for 700+ Open Source Models') st.markdown("""***Last updated August 10th***""") st.markdown(""" Hugging Face has run evaluations on over 500 open source models and provides results on a [publicly available leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and [dataset](https://huggingface.co/datasets/open-llm-leaderboard/results). The leaderboard currently displays the overall result for MMLU. This page shows individual accuracy scores for all 57 tasks of the MMLU evaluation. [Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b) """) filters = st.checkbox('Select Models and/or Evaluations') # Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked selected_columns = ['Parameters', 'MMLU_average'] if filters else data_provider.data.columns.tolist() # Initialize selected models as empty if filters are checked selected_models = [] if filters else data_provider.data.index.tolist() if filters: # Create multi-select for columns with default selection selected_columns = st.multiselect( 'Select Columns', data_provider.data.columns.tolist(), default=selected_columns ) # Create multi-select for models without default selection selected_models = st.multiselect( 'Select Models', data_provider.data.index.tolist() ) # Get the filtered data filtered_data = data_provider.get_data(selected_models) # sort the table by the MMLU_average column filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) # Select box for filtering by Parameters parameter_threshold = st.selectbox( 'Filter by Parameters (Less Than or Equal To):', options=[3, 7, 13, 35, 'No threshold'], index=4, # Set the default selected option to 'No threshold' format_func=lambda x: f"{x}" if isinstance(x, int) else x ) # Filter the DataFrame based on the selected parameter threshold if not 'No threshold' if isinstance(parameter_threshold, int): filtered_data = filtered_data[filtered_data['Parameters'] <= parameter_threshold] # Search box search_query = st.text_input("Filter by Model Name:", "") # Filter the DataFrame based on the search query in the index (model name) if search_query: filtered_data = filtered_data[filtered_data.index.str.contains(search_query, case=False)] # Search box for columns column_search_query = st.text_input("Filter by Column/Task Name:", "") # Get the columns that contain the search query matching_columns = [col for col in filtered_data.columns if column_search_query.lower() in col.lower()] # Display the DataFrame with only the matching columns st.markdown("## Sortable Results") st.dataframe(filtered_data[matching_columns]) # CSV download filtered_data.index.name = "Model Name" csv = filtered_data.to_csv(index=True) st.download_button( label="Download data as CSV", data=csv, file_name="model_evaluation_results.csv", mime="text/csv", ) def create_plot(df, x_values, y_values, models=None, title=None): if models is not None: df = df[df.index.isin(models)] # remove rows with NaN values df = df.dropna(subset=[x_values, y_values]) plot_data = pd.DataFrame({ 'Model': df.index, x_values: df[x_values], y_values: df[y_values], }) plot_data['color'] = 'purple' fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols") # If title is not provided, use x_values vs. y_values as the default title if title is None: title = x_values + " vs. " + y_values layout_args = dict( showlegend=False, xaxis_title=x_values, yaxis_title=y_values, xaxis=dict(), yaxis=dict(), title=title ) fig.update_layout(**layout_args) # Add a dashed line at 0.25 for the y_values x_min = df[x_values].min() x_max = df[x_values].max() y_min = df[y_values].min() y_max = df[y_values].max() if x_values.startswith('MMLU'): fig.add_shape( type='line', x0=0.25, x1=0.25, y0=y_min, y1=y_max, line=dict( color='red', width=2, dash='dash' ) ) if y_values.startswith('MMLU'): fig.add_shape( type='line', x0=x_min, x1=x_max, y0=0.25, y1=0.25, line=dict( color='red', width=2, dash='dash' ) ) return fig # Custom scatter plots st.header('Custom scatter plots') st.write(""" The scatter plot is useful to identify models that outperform or underperform on a particular task in relation to their size or overall performance. Identifying these models is a first step to better understand what training strategies result in better performance on a particular task. """) st.markdown("***The dashed red line indicates random chance accuracy of 0.25 as the MMLU evaluation is multiple choice with 4 response options.***") # add a line separating the writing st.markdown("***") st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.") selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3) if selected_x_column != selected_y_column: # Avoid creating a plot with the same column on both axes fig = create_plot(filtered_data, selected_x_column, selected_y_column) st.plotly_chart(fig) else: st.write("Please select different columns for the x and y axes.") # Section to select a model and display radar and line charts st.header("Compare selected models to models the closest 5 models on MMLU average") st.write("This is to demonstrate that while the average score is useful, there is a lot of variation in performance on individual tasks.") selected_model_name = st.selectbox("Select a Model:", filtered_data.index.tolist()) metrics_to_compare = ['MMLU_abstract_algebra', 'MMLU_astronomy', 'MMLU_business_ethics', 'MMLU_average', 'MMLU_moral_scenarios'] closest_models = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs().nsmallest(5).index.tolist() fig_radar = create_radar_chart_unfilled(filtered_data, closest_models, metrics_to_compare) fig_line = create_line_chart(filtered_data, closest_models, metrics_to_compare) st.plotly_chart(fig_radar) st.plotly_chart(fig_line) st.dataframe(filtered_data.loc[closest_models, metrics_to_compare]) # Function to find the top differences and return them as a DataFrame def find_top_differences_table(df, target_model, closest_models, num_differences=10, exclude_columns=['Parameters']): # Calculate the absolute differences for each task between the target model and the closest models differences = df.loc[closest_models].drop(columns=exclude_columns).sub(df.loc[target_model]).abs() # Unstack the differences and sort by the largest absolute difference top_differences = differences.unstack().nlargest(num_differences) # Convert the top differences to a DataFrame for display top_differences_table = pd.DataFrame({ 'Task': [idx[0] for idx in top_differences.index], 'Difference': top_differences.values }) return top_differences_table, top_differences_table['Task'].tolist() # Your existing code for selecting the target model and finding the closest models selected_model_name = "firefly-ziya-13b" # closest_models = filtered_data['MMLU_average'].sub(filtered_data.loc[selected_model_name, 'MMLU_average']).abs().nsmallest(5).index.tolist() # Find the top 10 tasks with the largest differences and convert to a DataFrame top_differences_table, top_differences_tasks = find_top_differences_table(filtered_data, selected_model_name, closest_models) # Display the table in the Streamlit app st.markdown("## Top Differences") st.dataframe(top_differences_table) # Create a radar chart for the tasks with the largest differences fig_radar_top_differences = create_radar_chart_unfilled(filtered_data, closest_models, top_differences_tasks) # Display the radar chart st.plotly_chart(fig_radar_top_differences) # end of custom scatter plots st.markdown("## Notable findings and plots") st.markdown('### Abstract Algebra Performance') st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.") plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10) fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra') st.plotly_chart(fig) # Moral scenarios plots st.markdown("### Moral Scenarios Performance") st.write(""" While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help identify capabilities that are important for moral reasoning. """) fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios") st.plotly_chart(fig) st.write() fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') st.plotly_chart(fig) st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***") st.markdown(""" # Citation 1. Corey Morris (2023). *MMLU-by-Task Evaluation Results for 700+ Open Source Models*. [link](https://huggingface.co/spaces/CoreyMorris/MMLU-by-task-Leaderboard) 2. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) 3. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628) 4. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457) 5. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830) 6. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300) 7. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958) """)