Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import numpy as np | |
import torch | |
import pickle | |
import types | |
from huggingface_hub import hf_hub_url, cached_download | |
#TOKEN = os.environ['TOKEN'] | |
with open(cached_download(hf_hub_url('CorvaeOboro/gen_ability_icon', 'gen_ability_icon_stylegan2ada_20220819.pkl')), 'rb') as f: | |
G = pickle.load(f)['G_ema']# torch.nn.Module | |
device = torch.device("cpu") | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
G = G.to(device) | |
else: | |
_old_forward = G.forward | |
def _new_forward(self, *args, **kwargs): | |
kwargs["force_fp32"] = True | |
return _old_forward(*args, **kwargs) | |
G.forward = types.MethodType(_new_forward, G) | |
_old_synthesis_forward = G.synthesis.forward | |
def _new_synthesis_forward(self, *args, **kwargs): | |
kwargs["force_fp32"] = True | |
return _old_synthesis_forward(*args, **kwargs) | |
G.synthesis.forward = types.MethodType(_new_synthesis_forward, G.synthesis) | |
def generate(num_images, interpolate): | |
if interpolate: | |
z1 = torch.randn([1, G.z_dim])# latent codes | |
z2 = torch.randn([1, G.z_dim])# latent codes | |
zs = torch.cat([z1 + (z2 - z1) * i / (num_images-1) for i in range(num_images)], 0) | |
else: | |
zs = torch.randn([num_images, G.z_dim])# latent codes | |
with torch.no_grad(): | |
zs = zs.to(device) | |
img = G(zs, None, force_fp32=True, noise_mode='const') | |
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return img.cpu().numpy() | |
demo = gr.Blocks() | |
def infer(num_images, interpolate): | |
img = generate(round(num_images), interpolate) | |
imgs = list(img) | |
return imgs | |
with demo: | |
gr.Markdown( | |
""" | |
# gen_ability_icon | |
creates circular magic ability icons from stylegan2ada model trained on synthetic dataset . | |
more information here : [https://github.com/CorvaeOboro/gen_ability_icon](https://github.com/CorvaeOboro/gen_ability_icon). | |
""") | |
images_num = gr.inputs.Slider(default=8, label="Num Images", minimum=1, maximum=16, step=1) | |
interpolate = gr.inputs.Checkbox(default=False, label="Interpolate") | |
submit = gr.Button("Generate") | |
out = gr.Gallery() | |
submit.click(fn=infer, | |
inputs=[images_num, interpolate], | |
outputs=out) | |
demo.launch() |