CorvaeOboro commited on
Commit
1c6ef85
·
1 Parent(s): b27802a

Delete dnnlib/tflib/tfutil.py

Browse files
Files changed (1) hide show
  1. dnnlib/tflib/tfutil.py +0 -262
dnnlib/tflib/tfutil.py DELETED
@@ -1,262 +0,0 @@
1
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Miscellaneous helper utils for Tensorflow."""
10
-
11
- import os
12
- import numpy as np
13
- import tensorflow as tf
14
-
15
- # Silence deprecation warnings from TensorFlow 1.13 onwards
16
- import logging
17
- logging.getLogger('tensorflow').setLevel(logging.ERROR)
18
- import tensorflow.contrib # requires TensorFlow 1.x!
19
- tf.contrib = tensorflow.contrib
20
-
21
- from typing import Any, Iterable, List, Union
22
-
23
- TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
24
- """A type that represents a valid Tensorflow expression."""
25
-
26
- TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
27
- """A type that can be converted to a valid Tensorflow expression."""
28
-
29
-
30
- def run(*args, **kwargs) -> Any:
31
- """Run the specified ops in the default session."""
32
- assert_tf_initialized()
33
- return tf.get_default_session().run(*args, **kwargs)
34
-
35
-
36
- def is_tf_expression(x: Any) -> bool:
37
- """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
38
- return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
39
-
40
-
41
- def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
42
- """Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
43
- return [dim.value for dim in shape]
44
-
45
-
46
- def flatten(x: TfExpressionEx) -> TfExpression:
47
- """Shortcut function for flattening a tensor."""
48
- with tf.name_scope("Flatten"):
49
- return tf.reshape(x, [-1])
50
-
51
-
52
- def log2(x: TfExpressionEx) -> TfExpression:
53
- """Logarithm in base 2."""
54
- with tf.name_scope("Log2"):
55
- return tf.log(x) * np.float32(1.0 / np.log(2.0))
56
-
57
-
58
- def exp2(x: TfExpressionEx) -> TfExpression:
59
- """Exponent in base 2."""
60
- with tf.name_scope("Exp2"):
61
- return tf.exp(x * np.float32(np.log(2.0)))
62
-
63
-
64
- def erfinv(y: TfExpressionEx) -> TfExpression:
65
- """Inverse of the error function."""
66
- # pylint: disable=no-name-in-module
67
- from tensorflow.python.ops.distributions import special_math
68
- return special_math.erfinv(y)
69
-
70
-
71
- def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
72
- """Linear interpolation."""
73
- with tf.name_scope("Lerp"):
74
- return a + (b - a) * t
75
-
76
-
77
- def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
78
- """Linear interpolation with clip."""
79
- with tf.name_scope("LerpClip"):
80
- return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
81
-
82
-
83
- def absolute_name_scope(scope: str) -> tf.name_scope:
84
- """Forcefully enter the specified name scope, ignoring any surrounding scopes."""
85
- return tf.name_scope(scope + "/")
86
-
87
-
88
- def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
89
- """Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
90
- return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
91
-
92
-
93
- def _sanitize_tf_config(config_dict: dict = None) -> dict:
94
- # Defaults.
95
- cfg = dict()
96
- cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
97
- cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
98
- cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
99
- cfg["env.HDF5_USE_FILE_LOCKING"] = "FALSE" # Disable HDF5 file locking to avoid concurrency issues with network shares.
100
- cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
101
- cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
102
-
103
- # Remove defaults for environment variables that are already set.
104
- for key in list(cfg):
105
- fields = key.split(".")
106
- if fields[0] == "env":
107
- assert len(fields) == 2
108
- if fields[1] in os.environ:
109
- del cfg[key]
110
-
111
- # User overrides.
112
- if config_dict is not None:
113
- cfg.update(config_dict)
114
- return cfg
115
-
116
-
117
- def init_tf(config_dict: dict = None) -> None:
118
- """Initialize TensorFlow session using good default settings."""
119
- # Skip if already initialized.
120
- if tf.get_default_session() is not None:
121
- return
122
-
123
- # Setup config dict and random seeds.
124
- cfg = _sanitize_tf_config(config_dict)
125
- np_random_seed = cfg["rnd.np_random_seed"]
126
- if np_random_seed is not None:
127
- np.random.seed(np_random_seed)
128
- tf_random_seed = cfg["rnd.tf_random_seed"]
129
- if tf_random_seed == "auto":
130
- tf_random_seed = np.random.randint(1 << 31)
131
- if tf_random_seed is not None:
132
- tf.set_random_seed(tf_random_seed)
133
-
134
- # Setup environment variables.
135
- for key, value in cfg.items():
136
- fields = key.split(".")
137
- if fields[0] == "env":
138
- assert len(fields) == 2
139
- os.environ[fields[1]] = str(value)
140
-
141
- # Create default TensorFlow session.
142
- create_session(cfg, force_as_default=True)
143
-
144
-
145
- def assert_tf_initialized():
146
- """Check that TensorFlow session has been initialized."""
147
- if tf.get_default_session() is None:
148
- raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
149
-
150
-
151
- def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
152
- """Create tf.Session based on config dict."""
153
- # Setup TensorFlow config proto.
154
- cfg = _sanitize_tf_config(config_dict)
155
- config_proto = tf.ConfigProto()
156
- for key, value in cfg.items():
157
- fields = key.split(".")
158
- if fields[0] not in ["rnd", "env"]:
159
- obj = config_proto
160
- for field in fields[:-1]:
161
- obj = getattr(obj, field)
162
- setattr(obj, fields[-1], value)
163
-
164
- # Create session.
165
- session = tf.Session(config=config_proto)
166
- if force_as_default:
167
- # pylint: disable=protected-access
168
- session._default_session = session.as_default()
169
- session._default_session.enforce_nesting = False
170
- session._default_session.__enter__()
171
- return session
172
-
173
-
174
- def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
175
- """Initialize all tf.Variables that have not already been initialized.
176
-
177
- Equivalent to the following, but more efficient and does not bloat the tf graph:
178
- tf.variables_initializer(tf.report_uninitialized_variables()).run()
179
- """
180
- assert_tf_initialized()
181
- if target_vars is None:
182
- target_vars = tf.global_variables()
183
-
184
- test_vars = []
185
- test_ops = []
186
-
187
- with tf.control_dependencies(None): # ignore surrounding control_dependencies
188
- for var in target_vars:
189
- assert is_tf_expression(var)
190
-
191
- try:
192
- tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
193
- except KeyError:
194
- # Op does not exist => variable may be uninitialized.
195
- test_vars.append(var)
196
-
197
- with absolute_name_scope(var.name.split(":")[0]):
198
- test_ops.append(tf.is_variable_initialized(var))
199
-
200
- init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
201
- run([var.initializer for var in init_vars])
202
-
203
-
204
- def set_vars(var_to_value_dict: dict) -> None:
205
- """Set the values of given tf.Variables.
206
-
207
- Equivalent to the following, but more efficient and does not bloat the tf graph:
208
- tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
209
- """
210
- assert_tf_initialized()
211
- ops = []
212
- feed_dict = {}
213
-
214
- for var, value in var_to_value_dict.items():
215
- assert is_tf_expression(var)
216
-
217
- try:
218
- setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
219
- except KeyError:
220
- with absolute_name_scope(var.name.split(":")[0]):
221
- with tf.control_dependencies(None): # ignore surrounding control_dependencies
222
- setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
223
-
224
- ops.append(setter)
225
- feed_dict[setter.op.inputs[1]] = value
226
-
227
- run(ops, feed_dict)
228
-
229
-
230
- def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
231
- """Create tf.Variable with large initial value without bloating the tf graph."""
232
- assert_tf_initialized()
233
- assert isinstance(initial_value, np.ndarray)
234
- zeros = tf.zeros(initial_value.shape, initial_value.dtype)
235
- var = tf.Variable(zeros, *args, **kwargs)
236
- set_vars({var: initial_value})
237
- return var
238
-
239
-
240
- def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
241
- """Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
242
- Can be used as an input transformation for Network.run().
243
- """
244
- images = tf.cast(images, tf.float32)
245
- if nhwc_to_nchw:
246
- images = tf.transpose(images, [0, 3, 1, 2])
247
- return images * ((drange[1] - drange[0]) / 255) + drange[0]
248
-
249
-
250
- def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
251
- """Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
252
- Can be used as an output transformation for Network.run().
253
- """
254
- images = tf.cast(images, tf.float32)
255
- if shrink > 1:
256
- ksize = [1, 1, shrink, shrink]
257
- images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
258
- if nchw_to_nhwc:
259
- images = tf.transpose(images, [0, 2, 3, 1])
260
- scale = 255 / (drange[1] - drange[0])
261
- images = images * scale + (0.5 - drange[0] * scale)
262
- return tf.saturate_cast(images, tf.uint8)