Spaces:
Runtime error
Runtime error
CorvaeOboro
commited on
Commit
β’
6d5fcc6
1
Parent(s):
3e63605
Delete dnnlib/tflib/autosummary.py
Browse files- dnnlib/tflib/autosummary.py +0 -193
dnnlib/tflib/autosummary.py
DELETED
@@ -1,193 +0,0 @@
|
|
1 |
-
ο»Ώ# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
2 |
-
#
|
3 |
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
4 |
-
# and proprietary rights in and to this software, related documentation
|
5 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
-
# distribution of this software and related documentation without an express
|
7 |
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
8 |
-
|
9 |
-
"""Helper for adding automatically tracked values to Tensorboard.
|
10 |
-
|
11 |
-
Autosummary creates an identity op that internally keeps track of the input
|
12 |
-
values and automatically shows up in TensorBoard. The reported value
|
13 |
-
represents an average over input components. The average is accumulated
|
14 |
-
constantly over time and flushed when save_summaries() is called.
|
15 |
-
|
16 |
-
Notes:
|
17 |
-
- The output tensor must be used as an input for something else in the
|
18 |
-
graph. Otherwise, the autosummary op will not get executed, and the average
|
19 |
-
value will not get accumulated.
|
20 |
-
- It is perfectly fine to include autosummaries with the same name in
|
21 |
-
several places throughout the graph, even if they are executed concurrently.
|
22 |
-
- It is ok to also pass in a python scalar or numpy array. In this case, it
|
23 |
-
is added to the average immediately.
|
24 |
-
"""
|
25 |
-
|
26 |
-
from collections import OrderedDict
|
27 |
-
import numpy as np
|
28 |
-
import tensorflow as tf
|
29 |
-
from tensorboard import summary as summary_lib
|
30 |
-
from tensorboard.plugins.custom_scalar import layout_pb2
|
31 |
-
|
32 |
-
from . import tfutil
|
33 |
-
from .tfutil import TfExpression
|
34 |
-
from .tfutil import TfExpressionEx
|
35 |
-
|
36 |
-
# Enable "Custom scalars" tab in TensorBoard for advanced formatting.
|
37 |
-
# Disabled by default to reduce tfevents file size.
|
38 |
-
enable_custom_scalars = False
|
39 |
-
|
40 |
-
_dtype = tf.float64
|
41 |
-
_vars = OrderedDict() # name => [var, ...]
|
42 |
-
_immediate = OrderedDict() # name => update_op, update_value
|
43 |
-
_finalized = False
|
44 |
-
_merge_op = None
|
45 |
-
|
46 |
-
|
47 |
-
def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
|
48 |
-
"""Internal helper for creating autosummary accumulators."""
|
49 |
-
assert not _finalized
|
50 |
-
name_id = name.replace("/", "_")
|
51 |
-
v = tf.cast(value_expr, _dtype)
|
52 |
-
|
53 |
-
if v.shape.is_fully_defined():
|
54 |
-
size = np.prod(v.shape.as_list())
|
55 |
-
size_expr = tf.constant(size, dtype=_dtype)
|
56 |
-
else:
|
57 |
-
size = None
|
58 |
-
size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
|
59 |
-
|
60 |
-
if size == 1:
|
61 |
-
if v.shape.ndims != 0:
|
62 |
-
v = tf.reshape(v, [])
|
63 |
-
v = [size_expr, v, tf.square(v)]
|
64 |
-
else:
|
65 |
-
v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
|
66 |
-
v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
|
67 |
-
|
68 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
|
69 |
-
var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
|
70 |
-
update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
|
71 |
-
|
72 |
-
if name in _vars:
|
73 |
-
_vars[name].append(var)
|
74 |
-
else:
|
75 |
-
_vars[name] = [var]
|
76 |
-
return update_op
|
77 |
-
|
78 |
-
|
79 |
-
def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
|
80 |
-
"""Create a new autosummary.
|
81 |
-
|
82 |
-
Args:
|
83 |
-
name: Name to use in TensorBoard
|
84 |
-
value: TensorFlow expression or python value to track
|
85 |
-
passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
|
86 |
-
|
87 |
-
Example use of the passthru mechanism:
|
88 |
-
|
89 |
-
n = autosummary('l2loss', loss, passthru=n)
|
90 |
-
|
91 |
-
This is a shorthand for the following code:
|
92 |
-
|
93 |
-
with tf.control_dependencies([autosummary('l2loss', loss)]):
|
94 |
-
n = tf.identity(n)
|
95 |
-
"""
|
96 |
-
tfutil.assert_tf_initialized()
|
97 |
-
name_id = name.replace("/", "_")
|
98 |
-
|
99 |
-
if tfutil.is_tf_expression(value):
|
100 |
-
with tf.name_scope("summary_" + name_id), tf.device(value.device):
|
101 |
-
condition = tf.convert_to_tensor(condition, name='condition')
|
102 |
-
update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
|
103 |
-
with tf.control_dependencies([update_op]):
|
104 |
-
return tf.identity(value if passthru is None else passthru)
|
105 |
-
|
106 |
-
else: # python scalar or numpy array
|
107 |
-
assert not tfutil.is_tf_expression(passthru)
|
108 |
-
assert not tfutil.is_tf_expression(condition)
|
109 |
-
if condition:
|
110 |
-
if name not in _immediate:
|
111 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
|
112 |
-
update_value = tf.placeholder(_dtype)
|
113 |
-
update_op = _create_var(name, update_value)
|
114 |
-
_immediate[name] = update_op, update_value
|
115 |
-
update_op, update_value = _immediate[name]
|
116 |
-
tfutil.run(update_op, {update_value: value})
|
117 |
-
return value if passthru is None else passthru
|
118 |
-
|
119 |
-
|
120 |
-
def finalize_autosummaries() -> None:
|
121 |
-
"""Create the necessary ops to include autosummaries in TensorBoard report.
|
122 |
-
Note: This should be done only once per graph.
|
123 |
-
"""
|
124 |
-
global _finalized
|
125 |
-
tfutil.assert_tf_initialized()
|
126 |
-
|
127 |
-
if _finalized:
|
128 |
-
return None
|
129 |
-
|
130 |
-
_finalized = True
|
131 |
-
tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
|
132 |
-
|
133 |
-
# Create summary ops.
|
134 |
-
with tf.device(None), tf.control_dependencies(None):
|
135 |
-
for name, vars_list in _vars.items():
|
136 |
-
name_id = name.replace("/", "_")
|
137 |
-
with tfutil.absolute_name_scope("Autosummary/" + name_id):
|
138 |
-
moments = tf.add_n(vars_list)
|
139 |
-
moments /= moments[0]
|
140 |
-
with tf.control_dependencies([moments]): # read before resetting
|
141 |
-
reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
|
142 |
-
with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
|
143 |
-
mean = moments[1]
|
144 |
-
std = tf.sqrt(moments[2] - tf.square(moments[1]))
|
145 |
-
tf.summary.scalar(name, mean)
|
146 |
-
if enable_custom_scalars:
|
147 |
-
tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
|
148 |
-
tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
|
149 |
-
|
150 |
-
# Setup layout for custom scalars.
|
151 |
-
layout = None
|
152 |
-
if enable_custom_scalars:
|
153 |
-
cat_dict = OrderedDict()
|
154 |
-
for series_name in sorted(_vars.keys()):
|
155 |
-
p = series_name.split("/")
|
156 |
-
cat = p[0] if len(p) >= 2 else ""
|
157 |
-
chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
|
158 |
-
if cat not in cat_dict:
|
159 |
-
cat_dict[cat] = OrderedDict()
|
160 |
-
if chart not in cat_dict[cat]:
|
161 |
-
cat_dict[cat][chart] = []
|
162 |
-
cat_dict[cat][chart].append(series_name)
|
163 |
-
categories = []
|
164 |
-
for cat_name, chart_dict in cat_dict.items():
|
165 |
-
charts = []
|
166 |
-
for chart_name, series_names in chart_dict.items():
|
167 |
-
series = []
|
168 |
-
for series_name in series_names:
|
169 |
-
series.append(layout_pb2.MarginChartContent.Series(
|
170 |
-
value=series_name,
|
171 |
-
lower="xCustomScalars/" + series_name + "/margin_lo",
|
172 |
-
upper="xCustomScalars/" + series_name + "/margin_hi"))
|
173 |
-
margin = layout_pb2.MarginChartContent(series=series)
|
174 |
-
charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
|
175 |
-
categories.append(layout_pb2.Category(title=cat_name, chart=charts))
|
176 |
-
layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
|
177 |
-
return layout
|
178 |
-
|
179 |
-
def save_summaries(file_writer, global_step=None):
|
180 |
-
"""Call FileWriter.add_summary() with all summaries in the default graph,
|
181 |
-
automatically finalizing and merging them on the first call.
|
182 |
-
"""
|
183 |
-
global _merge_op
|
184 |
-
tfutil.assert_tf_initialized()
|
185 |
-
|
186 |
-
if _merge_op is None:
|
187 |
-
layout = finalize_autosummaries()
|
188 |
-
if layout is not None:
|
189 |
-
file_writer.add_summary(layout)
|
190 |
-
with tf.device(None), tf.control_dependencies(None):
|
191 |
-
_merge_op = tf.summary.merge_all()
|
192 |
-
|
193 |
-
file_writer.add_summary(_merge_op.eval(), global_step)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|