CorvaeOboro commited on
Commit
6d5fcc6
β€’
1 Parent(s): 3e63605

Delete dnnlib/tflib/autosummary.py

Browse files
Files changed (1) hide show
  1. dnnlib/tflib/autosummary.py +0 -193
dnnlib/tflib/autosummary.py DELETED
@@ -1,193 +0,0 @@
1
- ο»Ώ# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Helper for adding automatically tracked values to Tensorboard.
10
-
11
- Autosummary creates an identity op that internally keeps track of the input
12
- values and automatically shows up in TensorBoard. The reported value
13
- represents an average over input components. The average is accumulated
14
- constantly over time and flushed when save_summaries() is called.
15
-
16
- Notes:
17
- - The output tensor must be used as an input for something else in the
18
- graph. Otherwise, the autosummary op will not get executed, and the average
19
- value will not get accumulated.
20
- - It is perfectly fine to include autosummaries with the same name in
21
- several places throughout the graph, even if they are executed concurrently.
22
- - It is ok to also pass in a python scalar or numpy array. In this case, it
23
- is added to the average immediately.
24
- """
25
-
26
- from collections import OrderedDict
27
- import numpy as np
28
- import tensorflow as tf
29
- from tensorboard import summary as summary_lib
30
- from tensorboard.plugins.custom_scalar import layout_pb2
31
-
32
- from . import tfutil
33
- from .tfutil import TfExpression
34
- from .tfutil import TfExpressionEx
35
-
36
- # Enable "Custom scalars" tab in TensorBoard for advanced formatting.
37
- # Disabled by default to reduce tfevents file size.
38
- enable_custom_scalars = False
39
-
40
- _dtype = tf.float64
41
- _vars = OrderedDict() # name => [var, ...]
42
- _immediate = OrderedDict() # name => update_op, update_value
43
- _finalized = False
44
- _merge_op = None
45
-
46
-
47
- def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
48
- """Internal helper for creating autosummary accumulators."""
49
- assert not _finalized
50
- name_id = name.replace("/", "_")
51
- v = tf.cast(value_expr, _dtype)
52
-
53
- if v.shape.is_fully_defined():
54
- size = np.prod(v.shape.as_list())
55
- size_expr = tf.constant(size, dtype=_dtype)
56
- else:
57
- size = None
58
- size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
59
-
60
- if size == 1:
61
- if v.shape.ndims != 0:
62
- v = tf.reshape(v, [])
63
- v = [size_expr, v, tf.square(v)]
64
- else:
65
- v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
66
- v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
67
-
68
- with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
69
- var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
70
- update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
71
-
72
- if name in _vars:
73
- _vars[name].append(var)
74
- else:
75
- _vars[name] = [var]
76
- return update_op
77
-
78
-
79
- def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None, condition: TfExpressionEx = True) -> TfExpressionEx:
80
- """Create a new autosummary.
81
-
82
- Args:
83
- name: Name to use in TensorBoard
84
- value: TensorFlow expression or python value to track
85
- passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
86
-
87
- Example use of the passthru mechanism:
88
-
89
- n = autosummary('l2loss', loss, passthru=n)
90
-
91
- This is a shorthand for the following code:
92
-
93
- with tf.control_dependencies([autosummary('l2loss', loss)]):
94
- n = tf.identity(n)
95
- """
96
- tfutil.assert_tf_initialized()
97
- name_id = name.replace("/", "_")
98
-
99
- if tfutil.is_tf_expression(value):
100
- with tf.name_scope("summary_" + name_id), tf.device(value.device):
101
- condition = tf.convert_to_tensor(condition, name='condition')
102
- update_op = tf.cond(condition, lambda: tf.group(_create_var(name, value)), tf.no_op)
103
- with tf.control_dependencies([update_op]):
104
- return tf.identity(value if passthru is None else passthru)
105
-
106
- else: # python scalar or numpy array
107
- assert not tfutil.is_tf_expression(passthru)
108
- assert not tfutil.is_tf_expression(condition)
109
- if condition:
110
- if name not in _immediate:
111
- with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
112
- update_value = tf.placeholder(_dtype)
113
- update_op = _create_var(name, update_value)
114
- _immediate[name] = update_op, update_value
115
- update_op, update_value = _immediate[name]
116
- tfutil.run(update_op, {update_value: value})
117
- return value if passthru is None else passthru
118
-
119
-
120
- def finalize_autosummaries() -> None:
121
- """Create the necessary ops to include autosummaries in TensorBoard report.
122
- Note: This should be done only once per graph.
123
- """
124
- global _finalized
125
- tfutil.assert_tf_initialized()
126
-
127
- if _finalized:
128
- return None
129
-
130
- _finalized = True
131
- tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
132
-
133
- # Create summary ops.
134
- with tf.device(None), tf.control_dependencies(None):
135
- for name, vars_list in _vars.items():
136
- name_id = name.replace("/", "_")
137
- with tfutil.absolute_name_scope("Autosummary/" + name_id):
138
- moments = tf.add_n(vars_list)
139
- moments /= moments[0]
140
- with tf.control_dependencies([moments]): # read before resetting
141
- reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
142
- with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
143
- mean = moments[1]
144
- std = tf.sqrt(moments[2] - tf.square(moments[1]))
145
- tf.summary.scalar(name, mean)
146
- if enable_custom_scalars:
147
- tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
148
- tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
149
-
150
- # Setup layout for custom scalars.
151
- layout = None
152
- if enable_custom_scalars:
153
- cat_dict = OrderedDict()
154
- for series_name in sorted(_vars.keys()):
155
- p = series_name.split("/")
156
- cat = p[0] if len(p) >= 2 else ""
157
- chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
158
- if cat not in cat_dict:
159
- cat_dict[cat] = OrderedDict()
160
- if chart not in cat_dict[cat]:
161
- cat_dict[cat][chart] = []
162
- cat_dict[cat][chart].append(series_name)
163
- categories = []
164
- for cat_name, chart_dict in cat_dict.items():
165
- charts = []
166
- for chart_name, series_names in chart_dict.items():
167
- series = []
168
- for series_name in series_names:
169
- series.append(layout_pb2.MarginChartContent.Series(
170
- value=series_name,
171
- lower="xCustomScalars/" + series_name + "/margin_lo",
172
- upper="xCustomScalars/" + series_name + "/margin_hi"))
173
- margin = layout_pb2.MarginChartContent(series=series)
174
- charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
175
- categories.append(layout_pb2.Category(title=cat_name, chart=charts))
176
- layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
177
- return layout
178
-
179
- def save_summaries(file_writer, global_step=None):
180
- """Call FileWriter.add_summary() with all summaries in the default graph,
181
- automatically finalizing and merging them on the first call.
182
- """
183
- global _merge_op
184
- tfutil.assert_tf_initialized()
185
-
186
- if _merge_op is None:
187
- layout = finalize_autosummaries()
188
- if layout is not None:
189
- file_writer.add_summary(layout)
190
- with tf.device(None), tf.control_dependencies(None):
191
- _merge_op = tf.summary.merge_all()
192
-
193
- file_writer.add_summary(_merge_op.eval(), global_step)