CorvaeOboro commited on
Commit
7bd3343
Β·
1 Parent(s): fb2aafe

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import argparse
6
+ import functools
7
+ import os
8
+ import pickle
9
+ import sys
10
+
11
+ import gradio as gr
12
+ import numpy as np
13
+ import torch
14
+ import torch.nn as nn
15
+ from huggingface_hub import hf_hub_download
16
+
17
+ sys.path.insert(0, 'gen_ability_icon')
18
+
19
+ TITLE = 'gen_ability_icon'
20
+ DESCRIPTION = '''creates circular magic ability icons from stylegan2ada model trained on synthetic dataset .
21
+ more information here : https://github.com/CorvaeOboro/gen_ability_icon.
22
+ '''
23
+
24
+
25
+ def parse_args() -> argparse.Namespace:
26
+ parser = argparse.ArgumentParser()
27
+ parser.add_argument('--device', type=str, default='cpu')
28
+ parser.add_argument('--theme', type=str)
29
+ parser.add_argument('--live', action='store_true')
30
+ parser.add_argument('--share', action='store_true')
31
+ parser.add_argument('--port', type=int)
32
+ parser.add_argument('--disable-queue',
33
+ dest='enable_queue',
34
+ action='store_false')
35
+ parser.add_argument('--allow-flagging', type=str, default='never')
36
+ return parser.parse_args()
37
+
38
+
39
+ def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
40
+ return torch.from_numpy(np.random.RandomState(seed).randn(
41
+ 1, z_dim)).to(device).float()
42
+
43
+
44
+ @torch.inference_mode()
45
+ def generate_image(seed: int, truncation_psi: float, model: nn.Module,
46
+ device: torch.device) -> np.ndarray:
47
+ seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
48
+
49
+ z = generate_z(model.z_dim, seed, device)
50
+ label = torch.zeros([1, model.c_dim], device=device)
51
+
52
+ out = model(z, label, truncation_psi=truncation_psi, force_fp32=True)
53
+ out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
54
+ return out[0].cpu().numpy()
55
+
56
+
57
+ def load_model(file_name: str, device: torch.device) -> nn.Module:
58
+ path = hf_hub_download(f'CorvaeOboro/gen_ability_icon',
59
+ f'{file_name}',
60
+ use_auth_token=TOKEN)
61
+ with open(path, 'rb') as f:
62
+ model = pickle.load(f)['G_ema']
63
+ model.eval()
64
+ model.to(device)
65
+ with torch.inference_mode():
66
+ z = torch.zeros((1, model.z_dim)).to(device)
67
+ label = torch.zeros([1, model.c_dim], device=device)
68
+ model(z, label, force_fp32=True)
69
+ return model
70
+
71
+
72
+ def main():
73
+ args = parse_args()
74
+ device = torch.device(args.device)
75
+
76
+ model = load_model('gen_ability_icon_stylegan2ada_20220801.pkl', device)
77
+
78
+ func = functools.partial(generate_image, model=model, device=device)
79
+ func = functools.update_wrapper(func, generate_image)
80
+
81
+ gr.Interface(
82
+ func,
83
+ [
84
+ gr.inputs.Number(default=0, label='Seed'),
85
+ gr.inputs.Slider(
86
+ 0, 2, step=0.05, default=0.7, label='Truncation psi'),
87
+ ],
88
+ gr.outputs.Image(type='numpy', label='Output'),
89
+ title=TITLE,
90
+ description=DESCRIPTION,
91
+ theme=args.theme,
92
+ allow_flagging=args.allow_flagging,
93
+ live=args.live,
94
+ ).launch(
95
+ enable_queue=args.enable_queue,
96
+ server_port=args.port,
97
+ share=args.share,
98
+ )
99
+
100
+
101
+ if __name__ == '__main__':
102
+ main()