Spaces:
Sleeping
Sleeping
File size: 3,057 Bytes
5a33c65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import os
from glob import glob
from pathlib import Path
import torch
import logging
import argparse
import torch
import numpy as np
from sklearn.cluster import KMeans, MiniBatchKMeans
import tqdm
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
import time
import random
def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
logger.info(f"Loading features from {in_dir}")
features = []
nums = 0
for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
features.append(torch.load(path).squeeze(0).numpy().T)
# print(features[-1].shape)
features = np.concatenate(features, axis=0)
print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
features = features.astype(np.float32)
logger.info(f"Clustering features of shape: {features.shape}")
t = time.time()
if use_minibatch:
kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
else:
kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
print(time.time()-t, "s")
x = {
"n_features_in_": kmeans.n_features_in_,
"_n_threads": kmeans._n_threads,
"cluster_centers_": kmeans.cluster_centers_,
}
print("end")
return x
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=Path, default="./dataset/44k",
help='path of training data directory')
parser.add_argument('--output', type=Path, default="logs/44k",
help='path of model output directory')
args = parser.parse_args()
checkpoint_dir = args.output
dataset = args.dataset
n_clusters = 10000
ckpt = {}
for spk in os.listdir(dataset):
if os.path.isdir(dataset/spk):
print(f"train kmeans for {spk}...")
in_dir = dataset/spk
x = train_cluster(in_dir, n_clusters, verbose=False)
ckpt[spk] = x
checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
torch.save(
ckpt,
checkpoint_path,
)
# import cluster
# for spk in tqdm.tqdm(os.listdir("dataset")):
# if os.path.isdir(f"dataset/{spk}"):
# print(f"start kmeans inference for {spk}...")
# for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
# mel_path = feature_path.replace(".discrete.npy",".mel.npy")
# mel_spectrogram = np.load(mel_path)
# feature_len = mel_spectrogram.shape[-1]
# c = np.load(feature_path)
# c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
# feature = c.T
# feature_class = cluster.get_cluster_result(feature, spk)
# np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
|