Spaces:
Sleeping
Sleeping
File size: 1,232 Bytes
4f75c30 d433389 308c6df d433389 e4c416d d26d155 d433389 b643921 d433389 b643921 d433389 e5ea3e0 d433389 a11ecec d433389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import os
from fastapi import FastAPI, WebSocket
from epub2txt import epub2txt
from fastllm_pytools import llm
model = llm.model(os.getenv("checkpoint_path"))
prompt = os.getenv("prompt")
app = FastAPI()
@app.websocket("/ws")
async def read_root(websocket: WebSocket):
await websocket.accept()
f_name = await websocket.receive_text()
ch_list = epub2txt(f_name, outputlist=True)
chapter_titles = epub2txt.content_titles
title = epub2txt.title
idx = 0
sm_list = []
for text in ch_list[2:]:
idx += 1
docs = []
for i in range(0, len(text)//2000+1, 2000):
t = text[i:i+2048]
if len(t) > 0:
docs.append(model.response(prompt+t))
await websocket.send_text(f"chsum: {docs[-1]}")
hist = docs[0]
for doc in docs[1:]:
hist = model.response(prompt+"\n"+hist+"\n"+doc)
await websocket.send_text(f"draft_sum: {hist}")
sm_list.append(hist)
mdobj_str = f"# {title}\n\n{hist}\n\n\n"
for ct, sm in zip(chapter_titles[2:], sm_list):
mdobj_str += f"## {ct}\n\n{sm}\n\n\n"
await websocket.send_text(f"output: {mdobj_str}")
# uvicorn api:app --reload |