File size: 3,391 Bytes
e011405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8469398
e011405
 
 
 
8469398
e011405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from langchain.document_loaders.unstructured import UnstructuredFileLoader 
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage, SystemMessage, Document

from transformers import AutoTokenizer, T5ForConditionalGeneration
from retrieval.retrieval import Retrieval, BM25
import os, time



class Agent:
    def __init__(self, args=None) -> None:
        self.args = args
        self.corpus = Retrieval()
        self.choices = args.choices
        
        self.context_value = ""
        self.use_context = False
        
        print("Model is loading...")
        self.model = T5ForConditionalGeneration.from_pretrained(args.model).to(args.device)
        self.tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
        print("Model loaded!")


    def load_context(self, doc_path):
        loader = UnstructuredFileLoader(doc_path.name)
        print('Loading file:', doc_path.name)
        context = loader.load()[0].page_content
        
        self.retrieval = Retrieval(docs=context)
        self.choices = self.retrieval.k
        self.use_context = True

        return f"Using file from {doc_path.name}"
    

    def asking(self, question):
        s_query = time.time()
        if self.use_context:
            print("Answering with your context")
            contexts = self.retrieval.get_context(question)
        else:
            print("Answering without your context")
            contexts = self.corpus.get_context(question)

        prompts = []
        for context in contexts:
            prompt = f"Trả lời câu hỏi: {question} Trong nội dung: {context['context']}"
            prompts.append(prompt)

        s_token = time.time()
        tokens = self.tokenizer(prompts, max_length=self.args.seq_len, truncation=True, padding='max_length', return_tensors='pt')
        
        s_gen = time.time()
        outputs = self.model.generate(
            input_ids=tokens.input_ids.to(self.args.device),
            attention_mask=tokens.attention_mask.to(self.args.device),
            max_new_tokens=self.args.out_len
        )

        s_de = time.time()
        answers = []
        for output in outputs:
            sequence = self.tokenizer.decode(output, skip_special_tokens=True)
            answers.append(sequence)

        self.temp = [contexts, answers]
        t_mess = "t_query: {:.2f}\t t_token: {:.2f}\t t_gen: {:.2f}\t t_decode: {:.2f}\t".format(
            s_token-s_query, s_gen-s_token, s_de-s_gen, time.time()-s_de
        )
        print(t_mess)
        return answers


    
    def get_context(self, context):
        self.context_value = context

        self.retrieval = Retrieval(docs=context)
        self.choices = self.retrieval.k
        self.use_context = True
        return context
    
    def load_context_file(self, file):
        print('Loading file:', file.name)
        text = ''
        for line in open(file.name, 'r', encoding='utf8'):
            text += line

        self.context_value = text
        return text
    
    def clear_context(self):
        self.context_value = ""
        self.use_context = False
        self.choices = self.args.choices
        return ""