Create Paraphrase.py
Browse files- Paraphrase.py +63 -0
Paraphrase.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
def chunk_text(text, max_length, tokenizer):
|
| 5 |
+
"""Split text into chunks of a specified maximum token length."""
|
| 6 |
+
tokens = tokenizer.encode(text, truncation=False)
|
| 7 |
+
chunks = []
|
| 8 |
+
while len(tokens) > max_length:
|
| 9 |
+
chunk = tokens[:max_length]
|
| 10 |
+
tokens = tokens[max_length:]
|
| 11 |
+
chunks.append(chunk)
|
| 12 |
+
if tokens:
|
| 13 |
+
chunks.append(tokens)
|
| 14 |
+
return chunks
|
| 15 |
+
|
| 16 |
+
def adjust_lengths(paragraph_length):
|
| 17 |
+
"""Adjust max_length and min_length based on the input length."""
|
| 18 |
+
if paragraph_length < 100:
|
| 19 |
+
return 100, 50 # Shorter paragraphs
|
| 20 |
+
elif paragraph_length < 500:
|
| 21 |
+
return 300, 150 # Medium-length paragraphs
|
| 22 |
+
else:
|
| 23 |
+
return 600, 300 # Longer paragraphs
|
| 24 |
+
|
| 25 |
+
def paraphrase_paragraph(paragraph, model_name='google/pegasus-multi_news'):
|
| 26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
|
| 28 |
+
tokenizer = PegasusTokenizer.from_pretrained(model_name, clean_up_tokenization_spaces=True)
|
| 29 |
+
|
| 30 |
+
# Tokenize the entire paragraph to calculate length
|
| 31 |
+
tokens = tokenizer.encode(paragraph, truncation=False)
|
| 32 |
+
paragraph_length = len(tokens)
|
| 33 |
+
|
| 34 |
+
# Adjust max_length and min_length dynamically
|
| 35 |
+
max_length, min_length = adjust_lengths(paragraph_length)
|
| 36 |
+
|
| 37 |
+
# Chunk the paragraph based on the model's token limit
|
| 38 |
+
chunks = chunk_text(paragraph, tokenizer.model_max_length, tokenizer)
|
| 39 |
+
|
| 40 |
+
paraphrased_chunks = []
|
| 41 |
+
for chunk in chunks:
|
| 42 |
+
# Decode chunk tokens back to text
|
| 43 |
+
chunk_t = tokenizer.decode(chunk, skip_special_tokens=True)
|
| 44 |
+
# Tokenize the text chunk
|
| 45 |
+
inputs = tokenizer(chunk_t, return_tensors='pt', padding=True, truncation=True).to(device)
|
| 46 |
+
|
| 47 |
+
# Generate paraphrased text
|
| 48 |
+
with torch.no_grad(): # Avoid gradient calculations for inference
|
| 49 |
+
generated_ids = model.generate(
|
| 50 |
+
inputs['input_ids'],
|
| 51 |
+
max_length=max_length, # Dynamically adjusted
|
| 52 |
+
min_length=min_length, # Dynamically adjusted
|
| 53 |
+
num_beams=3,
|
| 54 |
+
early_stopping=True
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
paraphrased_chunk = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
| 58 |
+
paraphrased_chunks.append(paraphrased_chunk)
|
| 59 |
+
|
| 60 |
+
# Combine all paraphrased chunks
|
| 61 |
+
paraphrased_paragraph = ' '.join(paraphrased_chunks)
|
| 62 |
+
|
| 63 |
+
return paraphrased_paragraph
|