Andrea Seveso commited on
Commit
4f4b508
1 Parent(s): 53bb222

New text for tables

Browse files
Files changed (2) hide show
  1. app.py +3 -1
  2. src/about.py +20 -2
app.py CHANGED
@@ -132,7 +132,9 @@ def filter_models(
132
  def get_macro_area_data():
133
  dataset = pd.read_csv("src/macro_area.csv", sep=',', skiprows=1)
134
  dataset = dataset.iloc[1:]
135
-
 
 
136
  # dataset = dataset.style.highlight_max(color='lightgreen', axis=0)
137
  return dataset
138
 
 
132
  def get_macro_area_data():
133
  dataset = pd.read_csv("src/macro_area.csv", sep=',', skiprows=1)
134
  dataset = dataset.iloc[1:]
135
+ columns = ['Model', 'LI (108)', 'RM (179)', 'RC (33)', 'WF (7)',
136
+ 'LS (29)', ' MO (24)', 'SP (4)', 'SY (19)', 'TP (6)']
137
+ dataset.columns = columns
138
  # dataset = dataset.style.highlight_max(color='lightgreen', axis=0)
139
  return dataset
140
 
src/about.py CHANGED
@@ -249,9 +249,27 @@ CITATION_BUTTON_TEXT = r"""
249
  """
250
 
251
  QUESTION_FORMAT_TEXT = """
252
- Question Format evaluation
 
 
 
 
 
253
  """
254
 
255
  MACRO_AREA_TEXT = """"
256
- This table shows the evaluation of the models by macro area. The evaluation is based on the following metrics:
 
 
 
 
 
 
 
 
 
 
 
 
 
257
  """
 
249
  """
250
 
251
  QUESTION_FORMAT_TEXT = """
252
+ Performance (accuracy %) comparison of AI models across school grades and question formats for grades 2 to 13.
253
+
254
+
255
+ Due to the stratification and the limited number of questions in some categories, extreme values such as 100 or 0 are more attainable in the sections with few items.
256
+
257
+
258
  """
259
 
260
  MACRO_AREA_TEXT = """"
261
+ Performance (accuracy %) comparison of AI models across macro areas.
262
+ The number of questions for each category is indicated in the table headers.
263
+
264
+ Categories are abbreviated as:
265
+
266
+ * _LI_: Locate and identify information within the text.
267
+ * _RM_: Reconstruct the meaning of the text, locally or globally.
268
+ * _RC_: Reflect on the content or form of the text, locally or globally, and evaluate them.
269
+ * _WF_: Word formation.
270
+ * _LS_: Lexicon and semantics.
271
+ * _MO_: Morphology.
272
+ * _SP_: Spelling.
273
+ * _SY_: Syntax.
274
+ * _TP_: Textuality and pragmatics.
275
  """