Joseph Catrambone
First import. Move gradio example from ControlNet branch to a standalone for use in HF Space. Add loading from HF hub.
2a6b1af
import torch
import einops
import ldm.modules.encoders.modules
import ldm.modules.attention
from transformers import logging
from ldm.modules.attention import default
def disable_verbosity():
logging.set_verbosity_error()
print('logging improved.')
return
def enable_sliced_attention():
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward
print('Enabled sliced_attention.')
return
def hack_everything(clip_skip=0):
disable_verbosity()
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip
print('Enabled clip hacks.')
return
# Written by Lvmin
def _hacked_clip_forward(self, text):
PAD = self.tokenizer.pad_token_id
EOS = self.tokenizer.eos_token_id
BOS = self.tokenizer.bos_token_id
def tokenize(t):
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"]
def transformer_encode(t):
if self.clip_skip > 1:
rt = self.transformer(input_ids=t, output_hidden_states=True)
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip])
else:
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state
def split(x):
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3]
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
raw_tokens_list = tokenize(text)
tokens_list = []
for raw_tokens in raw_tokens_list:
raw_tokens_123 = split(raw_tokens)
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123]
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123]
tokens_list.append(raw_tokens_123)
tokens_list = torch.IntTensor(tokens_list).to(self.device)
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i')
y = transformer_encode(feed)
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3)
return z
# Stolen from https://github.com/basujindal/stable-diffusion/blob/main/optimizedSD/splitAttention.py
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
del context, x
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
limit = k.shape[0]
att_step = 1
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0))
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0))
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0))
q_chunks.reverse()
k_chunks.reverse()
v_chunks.reverse()
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
del k, q, v
for i in range(0, limit, att_step):
q_buffer = q_chunks.pop()
k_buffer = k_chunks.pop()
v_buffer = v_chunks.pop()
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
del k_buffer, q_buffer
# attention, what we cannot get enough of, by chunks
sim_buffer = sim_buffer.softmax(dim=-1)
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
del v_buffer
sim[i:i + att_step, :, :] = sim_buffer
del sim_buffer
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h)
return self.to_out(sim)