Spaces:
Running
Running
File size: 7,644 Bytes
1ae03dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import requests
import os
import joblib
import pandas as pd
import datetime
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from dotenv import load_dotenv
load_dotenv(override=True)
def decode_features(df, feature_view):
"""Decodes features in the input DataFrame using corresponding Hopsworks Feature Store transformation functions"""
df_res = df.copy()
import inspect
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions
res = {}
for feature_name in td_transformation_functions:
if feature_name in df_res.columns:
td_transformation_function = td_transformation_functions[feature_name]
sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals()
param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty])
if td_transformation_function.name == "min_max_scaler":
df_res[feature_name] = df_res[feature_name].map(
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
elif td_transformation_function.name == "standard_scaler":
df_res[feature_name] = df_res[feature_name].map(
lambda x: x * param_dict['std_dev'] + param_dict["mean"])
elif td_transformation_function.name == "label_encoder":
dictionary = param_dict['value_to_index']
dictionary_ = {v: k for k, v in dictionary.items()}
df_res[feature_name] = df_res[feature_name].map(
lambda x: dictionary_[x])
return df_res
def get_model(project, model_name, evaluation_metric, sort_metrics_by):
"""Retrieve desired model or download it from the Hopsworks Model Registry.
In second case, it will be physically downloaded to this directory"""
TARGET_FILE = "model.pkl"
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
in os.walk('.') for filename in filenames if filename == TARGET_FILE]
if list_of_files:
model_path = list_of_files[0]
model = joblib.load(model_path)
else:
if not os.path.exists(TARGET_FILE):
mr = project.get_model_registry()
# get best model based on custom metrics
model = mr.get_best_model(model_name,
evaluation_metric,
sort_metrics_by)
model_dir = model.download()
model = joblib.load(model_dir + "/model.pkl")
return model
def get_air_quality_data(station_name):
AIR_QUALITY_API_KEY = os.getenv('AIR_QUALITY_API_KEY')
request_value = f'https://api.waqi.info/feed/{station_name}/?token={AIR_QUALITY_API_KEY}'
answer = requests.get(request_value).json()["data"]
forecast = answer['forecast']['daily']
return [
answer["time"]["s"][:10], # Date
int(forecast['pm25'][0]['avg']), # avg predicted pm25
int(forecast['pm10'][0]['avg']), # avg predicted pm10
max(int(forecast['pm25'][0]['avg']), int(forecast['pm10'][0]['avg'])) # avg predicted aqi
]
def get_air_quality_df(data):
col_names = [
'date',
'pm25',
'pm10',
'aqi'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
new_data['pm25'] = pd.to_numeric(new_data['pm25'])
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
print(new_data)
return new_data
def get_weather_data_daily(city):
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/today?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
data = answer['days'][0]
return [
answer['address'].lower(),
data['datetime'],
data['tempmax'],
data['tempmin'],
data['temp'],
data['feelslikemax'],
data['feelslikemin'],
data['feelslike'],
data['dew'],
data['humidity'],
data['precip'],
data['precipprob'],
data['precipcover'],
data['snow'],
data['snowdepth'],
data['windgust'],
data['windspeed'],
data['winddir'],
data['pressure'],
data['cloudcover'],
data['visibility'],
data['solarradiation'],
data['solarenergy'],
data['uvindex'],
data['conditions']
]
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
answer = requests.get(f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/{city}/{start_date}/{end_date}?unitGroup=metric&include=days&key={WEATHER_API_KEY}&contentType=json').json()
weather_data = answer['days']
final_df = pd.DataFrame()
for i in range(7):
data = weather_data[i]
list_of_data = [
answer['address'].lower(), data['datetime'], data['tempmax'], data['tempmin'], data['temp'], data['feelslikemax'],
data['feelslikemin'], data['feelslike'], data['dew'], data['humidity'], data['precip'], data['precipprob'], data['precipcover'],
data['snow'], data['snowdepth'], data['windgust'], data['windspeed'], data['winddir'], data['pressure'], data['cloudcover'],
data['visibility'], data['solarradiation'], data['solarenergy'], data['uvindex'], data['conditions']
]
weather_df = get_weather_df(list_of_data)
final_df = pd.concat([final_df, weather_df])
return final_df
def get_weather_df(data):
col_names = [
'name',
'date',
'tempmax',
'tempmin',
'temp',
'feelslikemax',
'feelslikemin',
'feelslike',
'dew',
'humidity',
'precip',
'precipprob',
'precipcover',
'snow',
'snowdepth',
'windgust',
'windspeed',
'winddir',
'pressure',
'cloudcover',
'visibility',
'solarradiation',
'solarenergy',
'uvindex',
'conditions'
]
new_data = pd.DataFrame(
data
).T
new_data.columns = col_names
for col in col_names:
if col not in ['name', 'date', 'conditions']:
new_data[col] = pd.to_numeric(new_data[col])
return new_data
def data_encoder(X):
X.drop(columns=['date', 'name'], inplace=True)
X['conditions'] = OrdinalEncoder().fit_transform(X[['conditions']])
return X
def transform(df):
df.loc[df["windgust"].isna(),'windgust'] = df['windspeed']
df['snow'].fillna(0,inplace=True)
df['snowdepth'].fillna(0, inplace=True)
df['pressure'].fillna(df['pressure'].mean(), inplace=True)
return df
def get_aplevel(temps:np.ndarray) -> list:
boundary_list = np.array([0, 50, 100, 150, 200, 300]) # assert temps.shape == [x, 1]
redf = np.logical_not(temps<=boundary_list) # temps.shape[0] x boundary_list.shape[0] ndarray
hift = np.concatenate((np.roll(redf, -1)[:, :-1], np.full((temps.shape[0], 1), False)), axis = 1)
cat = np.nonzero(np.not_equal(redf,hift))
air_pollution_level = ['Good', 'Moderate', 'Unhealthy for sensitive Groups','Unhealthy' ,'Very Unhealthy', 'Hazardous']
level = [air_pollution_level[el] for el in cat[1]]
return level |