Spaces:
Sleeping
Sleeping
import streamlit as st | |
import hopsworks | |
import joblib | |
import pandas as pd | |
import numpy as np | |
from datetime import timedelta, datetime | |
from functions import * | |
def fancy_header(text, font_size=24): | |
res = f'<span style="color:#ff5f27; font-size: {font_size}px;">{text}</span>' | |
st.markdown(res, unsafe_allow_html=True ) | |
st.title('Air Quality Prediction Project🌩') | |
progress_bar = st.sidebar.header('Working Progress') | |
progress_bar = st.sidebar.progress(0) | |
st.write(36 * "-") | |
fancy_header('\n Connecting to Hopsworks Feature Store...') | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
feature_view = fs.get_feature_view( | |
name = 'air_quality_fv', | |
version = 1 | |
) | |
st.write("Successfully connected!✔️") | |
progress_bar.progress(20) | |
st.write(36 * "-") | |
fancy_header('\n Getting data from Feature Store...') | |
today = datetime.date.today() | |
city = "vienna" | |
weekly_data = get_weather_data_weekly(city, today) | |
progress_bar.progress(50) | |
#latest_date_unix = str(X.date.values[0])[:10] | |
#latest_date = time.ctime(int(latest_date_unix)) | |
#st.write(f"Data for {latest_date}") | |
#data_to_display = decode_features(X, feature_view=feature_view) | |
progress_bar.progress(60) | |
st.write(36 * "-") | |
mr = project.get_model_registry() | |
model = mr.get_best_model("aqi_model", "rmse", "min") | |
model_dir = model.download() | |
model = joblib.load(model_dir + "/aqi_model.pkl") | |
progress_bar.progress(80) | |
st.sidebar.write("-" * 36) | |
preds = model.predict(data_encoder(weekly_data)).astype(int) | |
poll_level = get_aplevel(preds.T.reshape(-1, 1)) | |
next_week = [(datetime.today() + timedelta(days=d)).strftime('%A') for d in range(1, 7)] | |
df = pd.DataFrame(data=preds, index=["eg"], columns=[f"AQI Predictions for {next_day}" for next_day in next_week], dtype=int) | |
st.sidebar.write(df) | |
progress_bar.progress(100) | |
st.button("Re-run") |