Spaces:
Sleeping
Sleeping
adjoint-bass
commited on
Commit
•
a6e15b1
1
Parent(s):
e8665a5
update app, add picture
Browse files- app.py +24 -14
- functions.py +35 -60
- vienna.jpg +0 -0
app.py
CHANGED
@@ -3,49 +3,59 @@ import hopsworks
|
|
3 |
import joblib
|
4 |
import pandas as pd
|
5 |
from datetime import timedelta, datetime
|
6 |
-
from functions import
|
7 |
|
8 |
|
9 |
def fancy_header(text, font_size=24):
|
10 |
-
res = f'<p style="color:#
|
11 |
st.markdown(res, unsafe_allow_html=True)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
st.
|
16 |
-
|
17 |
-
st.
|
18 |
fancy_header('\n Connecting to Hopsworks Feature Store...')
|
19 |
|
20 |
project = hopsworks.login()
|
21 |
|
22 |
st.write("Successfully connected!✔️")
|
23 |
|
24 |
-
st.write(
|
25 |
-
fancy_header('\n
|
26 |
|
27 |
today = datetime.date.today()
|
28 |
city = "vienna"
|
29 |
weekly_data = get_weather_data_weekly(city, today)
|
|
|
30 |
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
mr = project.get_model_registry()
|
35 |
model = mr.get_best_model("aqi_model", "rmse", "min")
|
36 |
model_dir = model.download()
|
37 |
model = joblib.load(model_dir + "/aqi_model.pkl")
|
38 |
|
39 |
-
st.write("
|
|
|
40 |
|
|
|
41 |
|
42 |
preds = model.predict(data_encoder(weekly_data)).astype(int)
|
|
|
43 |
poll_level = get_aplevel(preds.T.reshape(-1, 1))
|
44 |
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
df = pd.DataFrame(data=[preds, poll_level], index=["AQI", "Air pollution level"], columns=
|
48 |
|
49 |
-
st.write(
|
|
|
50 |
|
51 |
st.button("Re-run")
|
|
|
3 |
import joblib
|
4 |
import pandas as pd
|
5 |
from datetime import timedelta, datetime
|
6 |
+
from functions import get_weather_data_weekly, data_encoder, get_aplevel
|
7 |
|
8 |
|
9 |
def fancy_header(text, font_size=24):
|
10 |
+
res = f'<p style="color:#ff5f27; font-size: {font_size}px;text-align:center">{text}</p>'
|
11 |
st.markdown(res, unsafe_allow_html=True)
|
12 |
|
13 |
+
# TODO: set the screen to widehardo
|
14 |
+
st.title('Air Quality Prediction Project 🌩')
|
15 |
+
st.image("bienna.jpg", use_column_width='auto')
|
16 |
+
st.write(36 * "-")
|
17 |
|
18 |
+
st.markdown("# This is a final project in the course ID2223 Scalable Machine Learning and Deep Learning :computer:")
|
19 |
+
st.markdown("My task was to predict the Air Quality Index (AQI) for one city (I choose Vienna) based on different weather data (pressure, snow-and cloud-coverage, temperature, etc.).")
|
20 |
+
st.markdown("For the full list of weather data, please click [here][https://visualcrossing.com/resources/documentation/weather-api/timeline-weather-api]")
|
21 |
fancy_header('\n Connecting to Hopsworks Feature Store...')
|
22 |
|
23 |
project = hopsworks.login()
|
24 |
|
25 |
st.write("Successfully connected!✔️")
|
26 |
|
27 |
+
st.write(36 * "-")
|
28 |
+
fancy_header('\n Collecting the weather data from Vienna...')
|
29 |
|
30 |
today = datetime.date.today()
|
31 |
city = "vienna"
|
32 |
weekly_data = get_weather_data_weekly(city, today)
|
33 |
+
st.write("Successfully collected!✔️")
|
34 |
|
35 |
+
st.write(36 * "-")
|
36 |
|
37 |
+
fancy_header("Loading the fitted XGBoost model...")
|
|
|
38 |
mr = project.get_model_registry()
|
39 |
model = mr.get_best_model("aqi_model", "rmse", "min")
|
40 |
model_dir = model.download()
|
41 |
model = joblib.load(model_dir + "/aqi_model.pkl")
|
42 |
|
43 |
+
st.write("Succesfully loaded!✔️")
|
44 |
+
st.sidebar.write("-" * 36)
|
45 |
|
46 |
+
fancy_header("Making AQI pedictions for the next week..")
|
47 |
|
48 |
preds = model.predict(data_encoder(weekly_data)).astype(int)
|
49 |
+
|
50 |
poll_level = get_aplevel(preds.T.reshape(-1, 1))
|
51 |
|
52 |
+
next_week_datetime = [today + timedelta(days=d) for d in range(7)]
|
53 |
+
|
54 |
+
next_week_str = [f"{days.strftime('%Y-%m-%d')}, {days.strftime('%A')}" for days in next_week_datetime]
|
55 |
|
56 |
+
df = pd.DataFrame(data=[preds, poll_level], index=["AQI", "Air pollution level"], columns=next_week_str)
|
57 |
|
58 |
+
st.write("Here they are!")
|
59 |
+
st.dataframe(df.style.apply) # ref to function color_aq
|
60 |
|
61 |
st.button("Re-run")
|
functions.py
CHANGED
@@ -1,65 +1,19 @@
|
|
1 |
import requests
|
2 |
import os
|
3 |
-
import joblib
|
4 |
import pandas as pd
|
5 |
import datetime
|
6 |
import numpy as np
|
7 |
from sklearn.preprocessing import OrdinalEncoder
|
8 |
from dotenv import load_dotenv
|
9 |
-
load_dotenv(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
td_transformation_functions = feature_view._batch_scoring_server._transformation_functions
|
20 |
-
|
21 |
-
res = {}
|
22 |
-
for feature_name in td_transformation_functions:
|
23 |
-
if feature_name in df_res.columns:
|
24 |
-
td_transformation_function = td_transformation_functions[feature_name]
|
25 |
-
sig, foobar_locals = inspect.signature(td_transformation_function.transformation_fn), locals()
|
26 |
-
param_dict = dict([(param.name, param.default) for param in sig.parameters.values() if param.default != inspect._empty])
|
27 |
-
if td_transformation_function.name == "min_max_scaler":
|
28 |
-
df_res[feature_name] = df_res[feature_name].map(
|
29 |
-
lambda x: x * (param_dict["max_value"] - param_dict["min_value"]) + param_dict["min_value"])
|
30 |
-
|
31 |
-
elif td_transformation_function.name == "standard_scaler":
|
32 |
-
df_res[feature_name] = df_res[feature_name].map(
|
33 |
-
lambda x: x * param_dict['std_dev'] + param_dict["mean"])
|
34 |
-
elif td_transformation_function.name == "label_encoder":
|
35 |
-
dictionary = param_dict['value_to_index']
|
36 |
-
dictionary_ = {v: k for k, v in dictionary.items()}
|
37 |
-
df_res[feature_name] = df_res[feature_name].map(
|
38 |
-
lambda x: dictionary_[x])
|
39 |
-
return df_res
|
40 |
-
|
41 |
-
|
42 |
-
def get_model(project, model_name, evaluation_metric, sort_metrics_by):
|
43 |
-
"""Retrieve desired model or download it from the Hopsworks Model Registry.
|
44 |
-
In second case, it will be physically downloaded to this directory"""
|
45 |
-
TARGET_FILE = "model.pkl"
|
46 |
-
list_of_files = [os.path.join(dirpath,filename) for dirpath, _, filenames \
|
47 |
-
in os.walk('.') for filename in filenames if filename == TARGET_FILE]
|
48 |
-
|
49 |
-
if list_of_files:
|
50 |
-
model_path = list_of_files[0]
|
51 |
-
model = joblib.load(model_path)
|
52 |
-
else:
|
53 |
-
if not os.path.exists(TARGET_FILE):
|
54 |
-
mr = project.get_model_registry()
|
55 |
-
# get best model based on custom metrics
|
56 |
-
model = mr.get_best_model(model_name,
|
57 |
-
evaluation_metric,
|
58 |
-
sort_metrics_by)
|
59 |
-
model_dir = model.download()
|
60 |
-
model = joblib.load(model_dir + "/model.pkl")
|
61 |
-
|
62 |
-
return model
|
63 |
|
64 |
|
65 |
def get_air_quality_data(station_name):
|
@@ -90,7 +44,6 @@ def get_air_quality_df(data):
|
|
90 |
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
|
91 |
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
|
92 |
|
93 |
-
print(new_data)
|
94 |
return new_data
|
95 |
|
96 |
|
@@ -125,6 +78,7 @@ def get_weather_data_daily(city):
|
|
125 |
data['uvindex'],
|
126 |
data['conditions']
|
127 |
]
|
|
|
128 |
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
|
129 |
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
130 |
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
|
@@ -135,10 +89,31 @@ def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
|
|
135 |
for i in range(7):
|
136 |
data = weather_data[i]
|
137 |
list_of_data = [
|
138 |
-
answer['address'].lower(),
|
139 |
-
data['
|
140 |
-
data['
|
141 |
-
data['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
]
|
143 |
weather_df = get_weather_df(list_of_data)
|
144 |
final_df = pd.concat([final_df, weather_df])
|
|
|
1 |
import requests
|
2 |
import os
|
|
|
3 |
import pandas as pd
|
4 |
import datetime
|
5 |
import numpy as np
|
6 |
from sklearn.preprocessing import OrdinalEncoder
|
7 |
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
## TODO: write function to display the color coding of the categoies both in the df and as a guide.
|
12 |
+
#sg like:
|
13 |
+
def color_aq(val):
|
14 |
+
color = 'green' if val else 'red'
|
15 |
+
return f'background-color: {color}'
|
16 |
+
# but better
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def get_air_quality_data(station_name):
|
|
|
44 |
new_data['pm10'] = pd.to_numeric(new_data['pm10'])
|
45 |
new_data['aqi'] = pd.to_numeric(new_data['aqi'])
|
46 |
|
|
|
47 |
return new_data
|
48 |
|
49 |
|
|
|
78 |
data['uvindex'],
|
79 |
data['conditions']
|
80 |
]
|
81 |
+
|
82 |
def get_weather_data_weekly(city: str, start_date: datetime) -> pd.DataFrame:
|
83 |
WEATHER_API_KEY = os.getenv('WEATHER_API_KEY')
|
84 |
end_date = f"{start_date + datetime.timedelta(days=6):%Y-%m-%d}"
|
|
|
89 |
for i in range(7):
|
90 |
data = weather_data[i]
|
91 |
list_of_data = [
|
92 |
+
answer['address'].lower(),
|
93 |
+
data['datetime'],
|
94 |
+
data['tempmax'],
|
95 |
+
data['tempmin'],
|
96 |
+
data['temp'],
|
97 |
+
data['feelslikemax'],
|
98 |
+
data['feelslikemin'],
|
99 |
+
data['feelslike'],
|
100 |
+
data['dew'],
|
101 |
+
data['humidity'],
|
102 |
+
data['precip'],
|
103 |
+
data['precipprob'],
|
104 |
+
data['precipcover'],
|
105 |
+
data['snow'],
|
106 |
+
data['snowdepth'],
|
107 |
+
data['windgust'],
|
108 |
+
data['windspeed'],
|
109 |
+
data['winddir'],
|
110 |
+
data['pressure'],
|
111 |
+
data['cloudcover'],
|
112 |
+
data['visibility'],
|
113 |
+
data['solarradiation'],
|
114 |
+
data['solarenergy'],
|
115 |
+
data['uvindex'],
|
116 |
+
data['conditions']
|
117 |
]
|
118 |
weather_df = get_weather_df(list_of_data)
|
119 |
final_df = pd.concat([final_df, weather_df])
|
vienna.jpg
ADDED