import streamlit as st import hopsworks import joblib import pandas as pd import numpy as np from datetime import timedelta, datetime from functions import * def fancy_header(text, font_size=24): res = f'{text}' st.markdown(res, unsafe_allow_html=True ) st.title('Air Quality Prediction Project🌩') progress_bar = st.sidebar.header('Working Progress') progress_bar = st.sidebar.progress(0) st.write(36 * "-") fancy_header('\n Connecting to Hopsworks Feature Store...') project = hopsworks.login() fs = project.get_feature_store() feature_view = fs.get_feature_view( name = 'air_quality_fv', version = 1 ) st.write("Successfully connected!✔️") progress_bar.progress(20) st.write(36 * "-") fancy_header('\n Getting data from Feature Store...') today = datetime.date.today() city = "vienna" weekly_data = get_weather_data_weekly(city, today) progress_bar.progress(50) #latest_date_unix = str(X.date.values[0])[:10] #latest_date = time.ctime(int(latest_date_unix)) #st.write(f"Data for {latest_date}") #data_to_display = decode_features(X, feature_view=feature_view) progress_bar.progress(60) st.write(36 * "-") mr = project.get_model_registry() model = mr.get_best_model("aqi_model", "rmse", "min") model_dir = model.download() model = joblib.load(model_dir + "/aqi_model.pkl") progress_bar.progress(80) st.sidebar.write("-" * 36) preds = model.predict(data_encoder(weekly_data)).astype(int) poll_level = get_aplevel(preds.T.reshape(-1, 1)) next_week = [(datetime.today() + timedelta(days=d)).strftime('%A') for d in range(1, 7)] df = pd.DataFrame(data=preds, index=["eg"], columns=[f"AQI Predictions for {next_day}" for next_day in next_week], dtype=int) st.sidebar.write(df) progress_bar.progress(100) st.button("Re-run")