Spaces:
Running
Running
from typing import Tuple | |
from PIL import Image | |
import torch | |
import spaces | |
import gradio as gr | |
import os | |
# from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import ( | |
# FluxControlNetInpaintPipeline, | |
# ) | |
from diffusers.pipelines.flux.pipeline_flux_inpaint import FluxInpaintPipeline | |
# from diffusers.models.controlnet_flux import FluxControlNetModel | |
from controlnet_aux import CannyDetector | |
# login hf token | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# print(HF_TOKEN) | |
# from huggingface_hub import login | |
# | |
# login() | |
IMAGE_SIZE = 1024 | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes" | |
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype) | |
# pipe = FluxControlNetInpaintPipeline.from_pretrained( | |
# base_model, controlnet=controlnet, torch_dtype=dtype | |
# ).to(device) | |
pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) | |
pipe.enable_model_cpu_offload() | |
canny = CannyDetector() | |
def resize_image_dimensions( | |
original_resolution_wh: Tuple[int, int], | |
maximum_dimension: int = IMAGE_SIZE | |
) -> Tuple[int, int]: | |
width, height = original_resolution_wh | |
# if width <= maximum_dimension and height <= maximum_dimension: | |
# width = width - (width % 32) | |
# height = height - (height % 32) | |
# return width, height | |
if width > height: | |
scaling_factor = maximum_dimension / width | |
else: | |
scaling_factor = maximum_dimension / height | |
new_width = int(width * scaling_factor) | |
new_height = int(height * scaling_factor) | |
new_width = new_width - (new_width % 32) | |
new_height = new_height - (new_height % 32) | |
return new_width, new_height | |
# def get_system_memory(): | |
# memory = psutil.virtual_memory() | |
# memory_percent = memory.percent | |
# memory_used = memory.used / (1024.0**3) | |
# memory_total = memory.total / (1024.0**3) | |
# return { | |
# "percent": f"{memory_percent}%", | |
# "used": f"{memory_used:.3f}GB", | |
# "total": f"{memory_total:.3f}GB", | |
# } | |
# | |
def inpaint( | |
image, | |
# mask, | |
prompt, | |
strength, | |
num_inference_steps, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
): | |
image = image['background'] | |
mask = image['layers'][0] | |
width, height = resize_image_dimensions(original_resolution_wh=image.size) | |
resized_image = image.resize((width, height), Image.LANCZOS) | |
resized_mask = mask.resize((width, height), Image.LANCZOS) | |
image_res = pipe( | |
prompt, | |
image=resized_image, | |
# control_image=canny_image, | |
# controlnet_conditioning_scale=controlnet_conditioning_scale, | |
mask_image=resized_mask, | |
strength=strength, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
return image_res | |
with gr.Blocks() as demo: | |
# gr.LoginButton() | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Textbox(value="Hello Memory") | |
# with gr.Column(): | |
# gr.JSON(get_system_memory, every=1) | |
gr.Interface( | |
fn=inpaint, | |
inputs=[ | |
gr.ImageEditor( | |
label='Image', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")), | |
gr.Image(type="pil", label="Input Image"), | |
# gr.Image(type="pil", label="Mask Image"), | |
gr.Textbox(label="Prompt"), | |
gr.Slider(0, 1, value=0.95, label="Strength"), | |
gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"), | |
gr.Slider(0, 20, value=5, label="Guidance Scale"), | |
gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"), | |
], | |
outputs=gr.Image(type="pil", label="Output Image"), | |
title="Flux Inpaint AI Model", | |
description="Upload an image and a mask, then provide a prompt to generate an inpainted image.", | |
) | |
demo.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import random | |
# # import spaces | |
# import torch | |
# from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL | |
# from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
# # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images | |
# | |
# dtype = torch.bfloat16 | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# | |
# taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
# good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device) | |
# pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device) | |
# torch.cuda.empty_cache() | |
# | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 2048 | |
# | |
# # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) | |
# | |
# # @spaces.GPU(duration=75) | |
# def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# | |
# for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( | |
# prompt=prompt, | |
# guidance_scale=guidance_scale, | |
# num_inference_steps=num_inference_steps, | |
# width=width, | |
# height=height, | |
# generator=generator, | |
# output_type="pil", | |
# good_vae=good_vae, | |
# ): | |
# yield img, seed | |
# | |
# examples = [ | |
# "a tiny astronaut hatching from an egg on the moon", | |
# "a cat holding a sign that says hello world", | |
# "an anime illustration of a wiener schnitzel", | |
# ] | |
# | |
# css=""" | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 520px; | |
# } | |
# """ | |
# | |
# with gr.Blocks(css=css) as demo: | |
# | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f"""# FLUX.1 [dev] | |
# 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
# [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
# """) | |
# | |
# with gr.Row(): | |
# | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# | |
# run_button = gr.Button("Run", scale=0) | |
# | |
# result = gr.Image(label="Result", show_label=False) | |
# | |
# with gr.Accordion("Advanced Settings", open=False): | |
# | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# | |
# with gr.Row(): | |
# | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, | |
# ) | |
# | |
# with gr.Row(): | |
# | |
# guidance_scale = gr.Slider( | |
# label="Guidance Scale", | |
# minimum=1, | |
# maximum=15, | |
# step=0.1, | |
# value=3.5, | |
# ) | |
# | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=28, | |
# ) | |
# | |
# gr.Examples( | |
# examples = examples, | |
# fn = infer, | |
# inputs = [prompt], | |
# outputs = [result, seed], | |
# cache_examples="lazy" | |
# ) | |
# | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn = infer, | |
# inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
# outputs = [result, seed] | |
# ) | |
# | |
# demo.launch() | |