Culda commited on
Commit
29053b7
1 Parent(s): da3d31b

no controlnet

Browse files
Files changed (1) hide show
  1. app.py +8 -6
app.py CHANGED
@@ -6,6 +6,7 @@ import os
6
  from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import (
7
  FluxControlNetInpaintPipeline,
8
  )
 
9
  from diffusers.models.controlnet_flux import FluxControlNetModel
10
  from controlnet_aux import CannyDetector
11
  import psutil
@@ -23,10 +24,11 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
23
  base_model = "black-forest-labs/FLUX.1-dev"
24
  controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
25
 
26
- controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
27
- pipe = FluxControlNetInpaintPipeline.from_pretrained(
28
- base_model, controlnet=controlnet, torch_dtype=dtype
29
- ).to(device)
 
30
 
31
  pipe.enable_model_cpu_offload()
32
 
@@ -61,7 +63,7 @@ def inpaint(
61
  prompt,
62
  image=image,
63
  control_image=canny_image,
64
- controlnet_conditioning_scale=controlnet_conditioning_scale,
65
  mask_image=mask,
66
  strength=strength,
67
  num_inference_steps=num_inference_steps,
@@ -94,7 +96,7 @@ with gr.Blocks() as demo:
94
  description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
95
  )
96
 
97
- demo.launch(debug=True, show_api=False, enable_queue=False)
98
 
99
  # import gradio as gr
100
  # import numpy as np
 
6
  from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import (
7
  FluxControlNetInpaintPipeline,
8
  )
9
+ from diffusers.pipelines.flux.pipeline_flux_inpaint import FluxInpaintPipeline
10
  from diffusers.models.controlnet_flux import FluxControlNetModel
11
  from controlnet_aux import CannyDetector
12
  import psutil
 
24
  base_model = "black-forest-labs/FLUX.1-dev"
25
  controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
26
 
27
+ # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
28
+ # pipe = FluxControlNetInpaintPipeline.from_pretrained(
29
+ # base_model, controlnet=controlnet, torch_dtype=dtype
30
+ # ).to(device)
31
+ pipe = FluxInpaintPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
32
 
33
  pipe.enable_model_cpu_offload()
34
 
 
63
  prompt,
64
  image=image,
65
  control_image=canny_image,
66
+ # controlnet_conditioning_scale=controlnet_conditioning_scale,
67
  mask_image=mask,
68
  strength=strength,
69
  num_inference_steps=num_inference_steps,
 
96
  description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
97
  )
98
 
99
+ demo.launch(debug=True)
100
 
101
  # import gradio as gr
102
  # import numpy as np