Culda commited on
Commit
4a4fa9d
1 Parent(s): d3b387e

use customer diffuser

Browse files
Files changed (2) hide show
  1. app.py +145 -145
  2. requirements.txt +1 -1
app.py CHANGED
@@ -1,148 +1,8 @@
1
- # import gradio as gr
2
- # import numpy as np
3
- # import random
4
- # # import spaces
5
- # import torch
6
- # from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
- # from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
- # # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
- #
10
- # dtype = torch.bfloat16
11
- # device = "cuda" if torch.cuda.is_available() else "cpu"
12
- #
13
- # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
- # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
15
- # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
16
- # torch.cuda.empty_cache()
17
- #
18
- # MAX_SEED = np.iinfo(np.int32).max
19
- # MAX_IMAGE_SIZE = 2048
20
- #
21
- # # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
- #
23
- # # @spaces.GPU(duration=75)
24
- # def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
- # if randomize_seed:
26
- # seed = random.randint(0, MAX_SEED)
27
- # generator = torch.Generator().manual_seed(seed)
28
- #
29
- # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
- # prompt=prompt,
31
- # guidance_scale=guidance_scale,
32
- # num_inference_steps=num_inference_steps,
33
- # width=width,
34
- # height=height,
35
- # generator=generator,
36
- # output_type="pil",
37
- # good_vae=good_vae,
38
- # ):
39
- # yield img, seed
40
- #
41
- # examples = [
42
- # "a tiny astronaut hatching from an egg on the moon",
43
- # "a cat holding a sign that says hello world",
44
- # "an anime illustration of a wiener schnitzel",
45
- # ]
46
- #
47
- # css="""
48
- # #col-container {
49
- # margin: 0 auto;
50
- # max-width: 520px;
51
- # }
52
- # """
53
- #
54
- # with gr.Blocks(css=css) as demo:
55
- #
56
- # with gr.Column(elem_id="col-container"):
57
- # gr.Markdown(f"""# FLUX.1 [dev]
58
- # 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
- # [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
- # """)
61
- #
62
- # with gr.Row():
63
- #
64
- # prompt = gr.Text(
65
- # label="Prompt",
66
- # show_label=False,
67
- # max_lines=1,
68
- # placeholder="Enter your prompt",
69
- # container=False,
70
- # )
71
- #
72
- # run_button = gr.Button("Run", scale=0)
73
- #
74
- # result = gr.Image(label="Result", show_label=False)
75
- #
76
- # with gr.Accordion("Advanced Settings", open=False):
77
- #
78
- # seed = gr.Slider(
79
- # label="Seed",
80
- # minimum=0,
81
- # maximum=MAX_SEED,
82
- # step=1,
83
- # value=0,
84
- # )
85
- #
86
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
- #
88
- # with gr.Row():
89
- #
90
- # width = gr.Slider(
91
- # label="Width",
92
- # minimum=256,
93
- # maximum=MAX_IMAGE_SIZE,
94
- # step=32,
95
- # value=1024,
96
- # )
97
- #
98
- # height = gr.Slider(
99
- # label="Height",
100
- # minimum=256,
101
- # maximum=MAX_IMAGE_SIZE,
102
- # step=32,
103
- # value=1024,
104
- # )
105
- #
106
- # with gr.Row():
107
- #
108
- # guidance_scale = gr.Slider(
109
- # label="Guidance Scale",
110
- # minimum=1,
111
- # maximum=15,
112
- # step=0.1,
113
- # value=3.5,
114
- # )
115
- #
116
- # num_inference_steps = gr.Slider(
117
- # label="Number of inference steps",
118
- # minimum=1,
119
- # maximum=50,
120
- # step=1,
121
- # value=28,
122
- # )
123
- #
124
- # gr.Examples(
125
- # examples = examples,
126
- # fn = infer,
127
- # inputs = [prompt],
128
- # outputs = [result, seed],
129
- # cache_examples="lazy"
130
- # )
131
- #
132
- # gr.on(
133
- # triggers=[run_button.click, prompt.submit],
134
- # fn = infer,
135
- # inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- # outputs = [result, seed]
137
- # )
138
- #
139
- # demo.launch()
140
-
141
- import torch
142
  import sentencepiece
 
143
  import spaces
144
  import gradio as gr
145
- from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
146
  from diffusers.models.controlnet_flux import FluxControlNetModel
147
  from controlnet_aux import CannyDetector
148
 
@@ -153,12 +13,11 @@ base_model = "black-forest-labs/FLUX.1-schnell"
153
  controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
154
 
155
  controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
156
- pipe = FluxPipeline.from_pretrained(
157
  base_model, controlnet=controlnet, torch_dtype=dtype
158
  ).to(device)
159
 
160
  pipe.enable_model_cpu_offload()
161
- # pipe.to("cuda")
162
 
163
  canny = CannyDetector()
164
 
@@ -202,6 +61,147 @@ iface = gr.Interface(
202
  outputs=gr.Image(type="pil", label="Output Image"),
203
  title="Flux Inpaint AI Model",
204
  description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
205
- )
206
 
207
  iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import sentencepiece
2
+ import torch
3
  import spaces
4
  import gradio as gr
5
+ from diffusers.pipelines.flux.pipeline_flux_controlnet_inpaint import FluxControlNetInpaintPipeline
6
  from diffusers.models.controlnet_flux import FluxControlNetModel
7
  from controlnet_aux import CannyDetector
8
 
 
13
  controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
14
 
15
  controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
16
+ pipe = FluxControlNetInpaintPipeline.from_pretrained(
17
  base_model, controlnet=controlnet, torch_dtype=dtype
18
  ).to(device)
19
 
20
  pipe.enable_model_cpu_offload()
 
21
 
22
  canny = CannyDetector()
23
 
 
61
  outputs=gr.Image(type="pil", label="Output Image"),
62
  title="Flux Inpaint AI Model",
63
  description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
64
+ )
65
 
66
  iface.launch()
67
+
68
+ # import gradio as gr
69
+ # import numpy as np
70
+ # import random
71
+ # # import spaces
72
+ # import torch
73
+ # from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
74
+ # from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
75
+ # # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
76
+ #
77
+ # dtype = torch.bfloat16
78
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
79
+ #
80
+ # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
81
+ # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
82
+ # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
83
+ # torch.cuda.empty_cache()
84
+ #
85
+ # MAX_SEED = np.iinfo(np.int32).max
86
+ # MAX_IMAGE_SIZE = 2048
87
+ #
88
+ # # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
89
+ #
90
+ # # @spaces.GPU(duration=75)
91
+ # def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
92
+ # if randomize_seed:
93
+ # seed = random.randint(0, MAX_SEED)
94
+ # generator = torch.Generator().manual_seed(seed)
95
+ #
96
+ # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
97
+ # prompt=prompt,
98
+ # guidance_scale=guidance_scale,
99
+ # num_inference_steps=num_inference_steps,
100
+ # width=width,
101
+ # height=height,
102
+ # generator=generator,
103
+ # output_type="pil",
104
+ # good_vae=good_vae,
105
+ # ):
106
+ # yield img, seed
107
+ #
108
+ # examples = [
109
+ # "a tiny astronaut hatching from an egg on the moon",
110
+ # "a cat holding a sign that says hello world",
111
+ # "an anime illustration of a wiener schnitzel",
112
+ # ]
113
+ #
114
+ # css="""
115
+ # #col-container {
116
+ # margin: 0 auto;
117
+ # max-width: 520px;
118
+ # }
119
+ # """
120
+ #
121
+ # with gr.Blocks(css=css) as demo:
122
+ #
123
+ # with gr.Column(elem_id="col-container"):
124
+ # gr.Markdown(f"""# FLUX.1 [dev]
125
+ # 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
126
+ # [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
127
+ # """)
128
+ #
129
+ # with gr.Row():
130
+ #
131
+ # prompt = gr.Text(
132
+ # label="Prompt",
133
+ # show_label=False,
134
+ # max_lines=1,
135
+ # placeholder="Enter your prompt",
136
+ # container=False,
137
+ # )
138
+ #
139
+ # run_button = gr.Button("Run", scale=0)
140
+ #
141
+ # result = gr.Image(label="Result", show_label=False)
142
+ #
143
+ # with gr.Accordion("Advanced Settings", open=False):
144
+ #
145
+ # seed = gr.Slider(
146
+ # label="Seed",
147
+ # minimum=0,
148
+ # maximum=MAX_SEED,
149
+ # step=1,
150
+ # value=0,
151
+ # )
152
+ #
153
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
154
+ #
155
+ # with gr.Row():
156
+ #
157
+ # width = gr.Slider(
158
+ # label="Width",
159
+ # minimum=256,
160
+ # maximum=MAX_IMAGE_SIZE,
161
+ # step=32,
162
+ # value=1024,
163
+ # )
164
+ #
165
+ # height = gr.Slider(
166
+ # label="Height",
167
+ # minimum=256,
168
+ # maximum=MAX_IMAGE_SIZE,
169
+ # step=32,
170
+ # value=1024,
171
+ # )
172
+ #
173
+ # with gr.Row():
174
+ #
175
+ # guidance_scale = gr.Slider(
176
+ # label="Guidance Scale",
177
+ # minimum=1,
178
+ # maximum=15,
179
+ # step=0.1,
180
+ # value=3.5,
181
+ # )
182
+ #
183
+ # num_inference_steps = gr.Slider(
184
+ # label="Number of inference steps",
185
+ # minimum=1,
186
+ # maximum=50,
187
+ # step=1,
188
+ # value=28,
189
+ # )
190
+ #
191
+ # gr.Examples(
192
+ # examples = examples,
193
+ # fn = infer,
194
+ # inputs = [prompt],
195
+ # outputs = [result, seed],
196
+ # cache_examples="lazy"
197
+ # )
198
+ #
199
+ # gr.on(
200
+ # triggers=[run_button.click, prompt.submit],
201
+ # fn = infer,
202
+ # inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
203
+ # outputs = [result, seed]
204
+ # )
205
+ #
206
+ # demo.launch()
207
+
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  torch
2
- git+https://github.com/huggingface/diffusers.git
3
  transformers
4
  accelerate
5
  controlnet_aux
 
1
  torch
2
+ git+https://github.com/culda/flux-controlnet-inpaint.git
3
  transformers
4
  accelerate
5
  controlnet_aux