Culda commited on
Commit
d29c5c7
1 Parent(s): dcff146

use spaces decorator

Browse files
Files changed (2) hide show
  1. app.py +193 -191
  2. requirements.txt +1 -1
app.py CHANGED
@@ -1,204 +1,206 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- # import spaces
5
- import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
- from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
- # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
-
10
- dtype = torch.bfloat16
11
- device = "cuda" if torch.cuda.is_available() else "cpu"
12
-
13
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
- good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
15
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
16
- torch.cuda.empty_cache()
17
-
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 2048
20
-
21
- # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
-
23
- # @spaces.GPU(duration=75)
24
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
- generator = torch.Generator().manual_seed(seed)
28
-
29
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
- prompt=prompt,
31
- guidance_scale=guidance_scale,
32
- num_inference_steps=num_inference_steps,
33
- width=width,
34
- height=height,
35
- generator=generator,
36
- output_type="pil",
37
- good_vae=good_vae,
38
- ):
39
- yield img, seed
40
-
41
- examples = [
42
- "a tiny astronaut hatching from an egg on the moon",
43
- "a cat holding a sign that says hello world",
44
- "an anime illustration of a wiener schnitzel",
45
- ]
46
-
47
- css="""
48
- #col-container {
49
- margin: 0 auto;
50
- max-width: 520px;
51
- }
52
- """
53
-
54
- with gr.Blocks(css=css) as demo:
55
-
56
- with gr.Column(elem_id="col-container"):
57
- gr.Markdown(f"""# FLUX.1 [dev]
58
- 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
- [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- seed = gr.Slider(
79
- label="Seed",
80
- minimum=0,
81
- maximum=MAX_SEED,
82
- step=1,
83
- value=0,
84
- )
85
-
86
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
-
88
- with gr.Row():
89
-
90
- width = gr.Slider(
91
- label="Width",
92
- minimum=256,
93
- maximum=MAX_IMAGE_SIZE,
94
- step=32,
95
- value=1024,
96
- )
97
-
98
- height = gr.Slider(
99
- label="Height",
100
- minimum=256,
101
- maximum=MAX_IMAGE_SIZE,
102
- step=32,
103
- value=1024,
104
- )
105
-
106
- with gr.Row():
107
-
108
- guidance_scale = gr.Slider(
109
- label="Guidance Scale",
110
- minimum=1,
111
- maximum=15,
112
- step=0.1,
113
- value=3.5,
114
- )
115
-
116
- num_inference_steps = gr.Slider(
117
- label="Number of inference steps",
118
- minimum=1,
119
- maximum=50,
120
- step=1,
121
- value=28,
122
- )
123
-
124
- gr.Examples(
125
- examples = examples,
126
- fn = infer,
127
- inputs = [prompt],
128
- outputs = [result, seed],
129
- cache_examples="lazy"
130
- )
131
-
132
- gr.on(
133
- triggers=[run_button.click, prompt.submit],
134
- fn = infer,
135
- inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
- outputs = [result, seed]
137
- )
138
-
139
- demo.launch()
140
- # import torch
141
  # import gradio as gr
142
- # from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
143
- # from diffusers.models.controlnet_flux import FluxControlNetModel
144
- # from controlnet_aux import CannyDetector
 
 
 
 
145
  #
146
  # dtype = torch.bfloat16
147
  # device = "cuda" if torch.cuda.is_available() else "cpu"
148
  #
149
- # base_model = "black-forest-labs/FLUX.1-schnell"
150
- # controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
151
- #
152
- # controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
153
- # pipe = FluxPipeline.from_pretrained(
154
- # base_model, controlnet=controlnet, torch_dtype=dtype
155
- # ).to(device)
156
  #
157
- # pipe.enable_model_cpu_offload()
158
- # # pipe.to("cuda")
159
  #
160
- # canny = CannyDetector()
161
  #
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  #
163
- # def inpaint(
164
- # image,
165
- # mask,
166
- # prompt,
167
- # strength,
168
- # num_inference_steps,
169
- # guidance_scale,
170
- # controlnet_conditioning_scale,
171
- # ):
172
- # canny_image = canny(image)
173
  #
174
- # image_res = pipe(
175
- # prompt,
176
- # image=image,
177
- # control_image=canny_image,
178
- # controlnet_conditioning_scale=controlnet_conditioning_scale,
179
- # mask_image=mask,
180
- # strength=strength,
181
- # num_inference_steps=num_inference_steps,
182
- # guidance_scale=guidance_scale,
183
- # ).images[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  #
185
- # return image_res
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  #
 
 
 
 
 
 
187
  #
188
- # iface = gr.Interface(
189
- # fn=inpaint,
190
- # inputs=[
191
- # gr.Image(type="pil", label="Input Image"),
192
- # gr.Image(type="pil", label="Mask Image"),
193
- # gr.Textbox(label="Prompt"),
194
- # gr.Slider(0, 1, value=0.95, label="Strength"),
195
- # gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
196
- # gr.Slider(0, 20, value=5, label="Guidance Scale"),
197
- # gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
198
- # ],
199
- # outputs=gr.Image(type="pil", label="Output Image"),
200
- # title="Flux Inpaint AI Model",
201
- # description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
202
- # )
203
- #
204
- # iface.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # import gradio as gr
2
+ # import numpy as np
3
+ # import random
4
+ # # import spaces
5
+ # import torch
6
+ # from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
+ # from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
+ # # from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
  #
10
  # dtype = torch.bfloat16
11
  # device = "cuda" if torch.cuda.is_available() else "cpu"
12
  #
13
+ # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
+ # good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-schnell", subfolder="vae", torch_dtype=dtype).to(device)
15
+ # pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype, vae=taef1).to(device)
16
+ # torch.cuda.empty_cache()
 
 
 
17
  #
18
+ # MAX_SEED = np.iinfo(np.int32).max
19
+ # MAX_IMAGE_SIZE = 2048
20
  #
21
+ # # pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
22
  #
23
+ # # @spaces.GPU(duration=75)
24
+ # def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
+ # if randomize_seed:
26
+ # seed = random.randint(0, MAX_SEED)
27
+ # generator = torch.Generator().manual_seed(seed)
28
+ #
29
+ # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
30
+ # prompt=prompt,
31
+ # guidance_scale=guidance_scale,
32
+ # num_inference_steps=num_inference_steps,
33
+ # width=width,
34
+ # height=height,
35
+ # generator=generator,
36
+ # output_type="pil",
37
+ # good_vae=good_vae,
38
+ # ):
39
+ # yield img, seed
40
+ #
41
+ # examples = [
42
+ # "a tiny astronaut hatching from an egg on the moon",
43
+ # "a cat holding a sign that says hello world",
44
+ # "an anime illustration of a wiener schnitzel",
45
+ # ]
46
  #
47
+ # css="""
48
+ # #col-container {
49
+ # margin: 0 auto;
50
+ # max-width: 520px;
51
+ # }
52
+ # """
 
 
 
 
53
  #
54
+ # with gr.Blocks(css=css) as demo:
55
+ #
56
+ # with gr.Column(elem_id="col-container"):
57
+ # gr.Markdown(f"""# FLUX.1 [dev]
58
+ # 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
59
+ # [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
60
+ # """)
61
+ #
62
+ # with gr.Row():
63
+ #
64
+ # prompt = gr.Text(
65
+ # label="Prompt",
66
+ # show_label=False,
67
+ # max_lines=1,
68
+ # placeholder="Enter your prompt",
69
+ # container=False,
70
+ # )
71
+ #
72
+ # run_button = gr.Button("Run", scale=0)
73
+ #
74
+ # result = gr.Image(label="Result", show_label=False)
75
+ #
76
+ # with gr.Accordion("Advanced Settings", open=False):
77
+ #
78
+ # seed = gr.Slider(
79
+ # label="Seed",
80
+ # minimum=0,
81
+ # maximum=MAX_SEED,
82
+ # step=1,
83
+ # value=0,
84
+ # )
85
+ #
86
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
87
+ #
88
+ # with gr.Row():
89
+ #
90
+ # width = gr.Slider(
91
+ # label="Width",
92
+ # minimum=256,
93
+ # maximum=MAX_IMAGE_SIZE,
94
+ # step=32,
95
+ # value=1024,
96
+ # )
97
+ #
98
+ # height = gr.Slider(
99
+ # label="Height",
100
+ # minimum=256,
101
+ # maximum=MAX_IMAGE_SIZE,
102
+ # step=32,
103
+ # value=1024,
104
+ # )
105
+ #
106
+ # with gr.Row():
107
  #
108
+ # guidance_scale = gr.Slider(
109
+ # label="Guidance Scale",
110
+ # minimum=1,
111
+ # maximum=15,
112
+ # step=0.1,
113
+ # value=3.5,
114
+ # )
115
+ #
116
+ # num_inference_steps = gr.Slider(
117
+ # label="Number of inference steps",
118
+ # minimum=1,
119
+ # maximum=50,
120
+ # step=1,
121
+ # value=28,
122
+ # )
123
+ #
124
+ # gr.Examples(
125
+ # examples = examples,
126
+ # fn = infer,
127
+ # inputs = [prompt],
128
+ # outputs = [result, seed],
129
+ # cache_examples="lazy"
130
+ # )
131
  #
132
+ # gr.on(
133
+ # triggers=[run_button.click, prompt.submit],
134
+ # fn = infer,
135
+ # inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
136
+ # outputs = [result, seed]
137
+ # )
138
  #
139
+ # demo.launch()
140
+
141
+ import torch
142
+ import spaces
143
+ import gradio as gr
144
+ from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
145
+ from diffusers.models.controlnet_flux import FluxControlNetModel
146
+ from controlnet_aux import CannyDetector
147
+
148
+ dtype = torch.bfloat16
149
+ device = "cuda" if torch.cuda.is_available() else "cpu"
150
+
151
+ base_model = "black-forest-labs/FLUX.1-schnell"
152
+ controlnet_model = "YishaoAI/flux-dev-controlnet-canny-kid-clothes"
153
+
154
+ controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=dtype)
155
+ pipe = FluxPipeline.from_pretrained(
156
+ base_model, controlnet=controlnet, torch_dtype=dtype
157
+ ).to(device)
158
+
159
+ pipe.enable_model_cpu_offload()
160
+ # pipe.to("cuda")
161
+
162
+ canny = CannyDetector()
163
+
164
+ @spaces.GPU(duration=75)
165
+ def inpaint(
166
+ image,
167
+ mask,
168
+ prompt,
169
+ strength,
170
+ num_inference_steps,
171
+ guidance_scale,
172
+ controlnet_conditioning_scale,
173
+ ):
174
+ canny_image = canny(image)
175
+
176
+ image_res = pipe(
177
+ prompt,
178
+ image=image,
179
+ control_image=canny_image,
180
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
181
+ mask_image=mask,
182
+ strength=strength,
183
+ num_inference_steps=num_inference_steps,
184
+ guidance_scale=guidance_scale,
185
+ ).images[0]
186
+
187
+ return image_res
188
+
189
+
190
+ iface = gr.Interface(
191
+ fn=inpaint,
192
+ inputs=[
193
+ gr.Image(type="pil", label="Input Image"),
194
+ gr.Image(type="pil", label="Mask Image"),
195
+ gr.Textbox(label="Prompt"),
196
+ gr.Slider(0, 1, value=0.95, label="Strength"),
197
+ gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps"),
198
+ gr.Slider(0, 20, value=5, label="Guidance Scale"),
199
+ gr.Slider(0, 1, value=0.5, label="ControlNet Conditioning Scale"),
200
+ ],
201
+ outputs=gr.Image(type="pil", label="Output Image"),
202
+ title="Flux Inpaint AI Model",
203
+ description="Upload an image and a mask, then provide a prompt to generate an inpainted image.",
204
+ )
205
+
206
+ iface.launch()
requirements.txt CHANGED
@@ -4,5 +4,5 @@ transformers
4
  accelerate
5
  controlnet_aux
6
  gradio
7
- sentencepiece
8
  tokenizers
 
 
4
  accelerate
5
  controlnet_aux
6
  gradio
 
7
  tokenizers
8
+ spaces