Spaces:
Sleeping
Sleeping
File size: 4,324 Bytes
8ca3bc5 a203e8e b555c35 a203e8e ac2d8d3 8ca3bc5 a203e8e daacba2 a203e8e daacba2 8ca3bc5 a203e8e daacba2 a203e8e 8ca3bc5 a203e8e 8ca3bc5 a203e8e 7b92038 a203e8e 8ca3bc5 ac2d8d3 a203e8e ac2d8d3 817178f 68bcc63 a203e8e 8ca3bc5 a203e8e 8ca3bc5 a203e8e f61b980 a203e8e 8ca3bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, TextIteratorStreamer
from threading import Thread
from llama_cpp import Llama
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">CyberNative-AI/Colibri_8b_v0.1</h1>
<p>This Space demonstrates the CyberSecurity-tuned model <a href="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1"><b>Colibri_8b_v0.1</b></a>.
</div>
'''
LICENSE = """
<p/>
---
Colibri v0.1 is built on top of Dolphin Llama 3
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1/resolve/main/cybernative_ai_colibri_logo.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Colibri_v0.1 Dolphin Meta llama3</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
conversation.append({"role": "system", "content": "You are Colibri, an advanced cybersecurity AI assistant developed by CyberNative AI."})
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
llm = Llama.from_pretrained(
repo_id="CyberNative-AI/Colibri_8b_v0.1_q5_gguf",
filename="*Q5_K_M.gguf",
chat_format="chatml",
verbose=False,
max_tokens=max_new_tokens,
stop=["<|im_end|>"]
)
response=llm.create_chat_completion(messages=conversation, temperature=temperature)
# Access the first (and likely only) choice in the response
choice = response['choices'][0]
# Extract the text content from the message within the choice
text_response = choice['message']['content']
yield text_response
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.6,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['What are the two main methods used in the research to collect DKIM information?'],
['What is the primary purpose of OS fingerprinting using tools like Nmap, and why might it not always be 100% accurate?'],
['What is 9,000 * 9,000?'],
['What technique can be used to enumerate SMB shares within a Windows environment from a Windows client?'],
['What is the primary benefit of interleaving in cybersecurity education and training?']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch() |